
AD-A014 859

DYNAMICS OF SATELLITE WIRE-BOOM
SYSTEMS

Shu T. Lai, et al

Logicon, Incorporated

III

Prepared for:

Air Force Cambridge Research
Laboratories

28 February 1975

. DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

'i



AFCRIL-TR-7'5-0220 4

DYNAMICS OF SA-TELLITE WIRE-BOOM SYSTEMS

Shu T. Lai
Krishin H. Bhavnani

SLogicon, Inc.
* 21535 Hawthorne Boulevard

Torrance, California 90503

28 February 1975

Scien~tific Report No. I

Approved for public release; distribution unlimited.

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
tTNirED STATES AIR FORCE
HANSCOM AFB, MASSACHUSETTS 0W731

NATIONAL TECHNICAL .
INFORMATION SERVICE

us On-mn f CovnmnrWP
SpongI..Id. VA. 22151

Best Available Copy



SCCURITY CLASSIFICATION OF THsIS PAGE (When Dat&,Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3, RECIPIENT'S CATALOG NUMBER

4. T IT LE (and Subti tle) S. TYPE OF REP~ORT &PERIOD COVERED

DYNAMICS OF SATELLITE WIRE-BOOM Scientific -Interim

SYSTEMS 6. PERFORMING ORG. REPORT NUMBER
Scientific Report No. i

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Shu T. Lai F19628-75-C-003'c
Krishin H. Bhavnani

9-- ERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKL c nAREA & WORK UNIT NUMBERSLogic on, Inc.21535 Hawthorne Boulevard N/A

s - Torrance, California 90503
= ,1. LONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATES Air Force Cambridge Research Laboratories Z8 February 1975

Hanscom AFB, Massachusetts 01.731 13. NUMBER OF PAGES

Contract Monitor: Isabel M. Huis.1 v/SUYA 239
14. MONITORING AGENCY NAME & ADDRESS(iL different from Cohtrolling Office) IS. SECURITY CLASS. jut this report)

Unclassified

15a. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

f 18. SUPPLEMENTARY NOTES

Tech, Other

19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

Satellite Computer Simulation Laplace Transforms
Wire-booms Lagrangian Fourier Spectral Analysis
Oscillation Dynamics Normal Modes Deployment
Coupled and Uncoupled Eigenvalue Analysis Retraction

Modes
20. ABSTRACT (Continue on reverse side It necessary and identify by block number)

This is a theoretical analysis and computer simulation problem involving
the mathematical formulation, derivation and computation of .il mode
characteristics of a coupled spinning satellite hub-wire boom system;
the digital simulation generates time-det-rdcnt dynamical behavior' of
the satellite system under different experimental conditions.

DD J jAN 13 473 EDITION OF I NOV 65 IS OBSOLETE

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



... •7 "

Acknowledgments

"-i- iThe authors are deeply indebted to many persons without whom this
project could not have been initiated, nurtured, and completed.

Miss Eunice C. Cronin and Ms. Rita C. Sagalyn of AFCRL initiated this
study, and directed a comprehensive effort on the project.

Dr. Michael Smiddy of AFCRL formulated the scope of the problem,
,, guided the analysis and simulation studies, and provided much of the
• I engineering, documentary and other pertinent input.

tently and, as contract monitor, helped at various stages by obtaining
••! Mrs. Isabel Hussey of AFGRL encouraged our investigations consis-

related documents and information from other agencies.

Special thanks are due to Dr. Hal Mahon of the University of Massa-
chusetts for close involvement with the problem from initiation to
completion, for interest and guidance in the analysis, and for advo-

*i• cating extended studies of normal modes and out-of-plane dynamics
I using the Lagrangian formulation.

Dr. V. A. Chobotov of the Aerospace Corporation very kindly com-
municated with us regarding his studies and some potential problem
areas affecting satellite-boom dynamics.

Mrs. Sally Sweatt, Mrs. Shirley Hendrickson, and Mrs. Jan Rogers
have handled the exacting task of technical typing entirely proficiently,

I Nand we are most grateful to them.

Preceding page blank

3



* 8Table of Contents

Chapter ae

1. INTRODUCTION ...... .............. .

2. LINEARIZED RESPONSE OF THE SATELLITE- 14
• BOOM SYSTEM ... . ....... . . . . .

2. 1 Effect of Deployment or Retraction ......... 14
Z. 2 Forced Oscillation Equations .............. 17

2. 3 Laplace Transforms and Transient Response . . 21
2.4 Physical Insights Gained from these Results... 24

3. LAGRANGIAN DYNAMICS OF COUPLED HUB-
BOOM OSCILLATIONS INCLUDING
TRANSLATIOý ....... .............. 25

3.1 Notations ............ .......... . 25
3.2 Kinetic Energy of a Tip Mass ............. 29
3.3 The Lagrangian ............ ......... 31
3.4 0 - equation of Motion. ..... ...... .... 33

3.45 i- equation of Motion .......... ....... 35
3.6 X - equation of Motion. ........... ....... 37

3.7 Y equation of Motion .............. 38
3.8 ri - equation of Motion .............. 39

4. ANALYTIC SOLUTION FOR INPLANE
OSCILLATIONS .................... 40

4. 1 No-translation Formulation .............. 40
4.2 Harmonic Approximation with Translation .... 43

5. NORMAL COORDINATES FOR INPL NE
OSCILLATIONS .................... 49

5.1 Harmonic Approximation with Matrix
Formulation ...... .................. 49

5. 2 Orthogonal Transformation of Kinetic Energy . 54
5.3 Orthogonal Transformation of Potential Energy. 62

6. OUT-OF-PLANE OSCILLATIONS .......... b 5

6.1 Coordinates of Tip Masses ....... ......... 66
6.2 Out-of-Plane Lagrangian ............... 68

-4" 4
- •_I



Table of Contents (cont.)

Chapter Page

* 6.3 Harmonic Approximation. . . ........ . ... 69
6.4 Potential Energy Orthogonal Transformation...

7. UNEQUAL LENGTH BOOMS .............. 80

* 7. 1 Boom Pairs of Unequal Length, Normal Modes"Without Translation ............. . . .. 80

7.2 Four Booms all of Different Lengths ........ 86
7.3 Unequal Boom Pair Lengths, with Translation.. 89
7.4 Diagonalization of T-matrix . .. .. .. .. .... 93

.•, 7.5 Orthogonal Transformation of V-matrix ...... 96

8. ENGINEERING ASPECTS ................ 100

8. 1 General Physical Parameters . . . . . . . . o00
8.2 Stiffness and Damping Parameters . . . . . . . . to0
8.3 Estimate of Performance -- Damping of Large

Disturbances . .... . ................ 106

9. DISCUSSION OF RESULTS ............... 108

9. 1 Main Features of Analytical Results ........ 108
9.2 Remarks on Fourier Spectral Analysis of

Discrete Time Series . . . . . . . . . . . . . . . . .i
9.3 Computer Simulation Results ............. *121

10. PROGRAM LJSTINGS, INPUT FORMATS,
AND SAMPLE OUTPUTS... . ............... I7C

10. 1 Introduction........ . 170
10.2 Method of Sirnulat.on ....................... 170

APPENDIX A Conservation of Linear Momenta ..... 213
V. APPENDIX B Conservation of Angular Momenta .... 215

APPENDIX C Simple Derivation of Some Frequencies. 218

APPENDIX D Evaluation of Determinent JAI ... 220
APPENDIX E Sin ýi and Cos i................. 226

APPENDIX F Derivation of Inverse Matrix [BI- (in-plane) 227
APPENDIX G Derivation of Inverse Matrix [B]=- (out-of-plane) 231
APPENDIX 11 Derivation of Inverbc Matrix [B]"1 (unequal

boom pairs) ................... 234

R E IFE.REN C ES ............................ .238

• C.



List of Tables

Number Page

1. Normal Modes of Satellite with Equal Length
Wire Booms - - Neglegible TranslationalA
Oscillation oi Hub . . . .... . ........ 116

2. Normal Modes of Satellite with Equal Length
Wire Booms - - Including Translational
Oscillation of Hub ..... .. **** 117

3. Normal Modes of Satellite with Pairwise
Equal Length Wire Booms - - Including
Translational Oscillation of Hub........**** 1

4. Normal Modes Out-of-spin-plane of Satellite
with Four Equal Lengtýh Wire Booms - - In-
cluding Translational Oscillation of Hub...

5. Computer Simulated Frequencies vs Harmonic
Frequencies.... ........ . ...... 10

6. Inputs for Program SATEDYN ....... 171

7. Inputs for Program SYNH-ARM............... 17Z

List oi Figuires

1. ~Analysis Procedure-, for Satellite-Boom *
Dynamrics ......... *... ......... io 1

2. Spinning Satr~lite -Wire Boom System .. .. 25

3. In-plan,.; Normal Modes for Equal Boom

4. Oscillations Out of the Spin Plane. . . . . .6

5. Locations of Modes 4 antI 5 Frequencies. 84

6. Mode Shapes for Unequtal Letngth Boom Pairs .



List of Figures (cont.)

Numbe r Pasle

7. Frequency Locations of Nontrivial Modes

for a Heavy Hub with four Booms of Different
o • Lengths .. . . . .. . . . .. . . . 7

8. Mode Shapes for all Unequal Length Booms . . . 88

9. Fourier Transforms of 4 Time Series ... . .. .i

10. Power Spectrum of a Discrete Wave Train
of Finite Length . ..................... . .

11. Non-trivial Harmonic Frequencies of Satellite
System Spinning at 3 RPM............... . 113

12. Non-trivial Harmonic Frequencies of Satellite
System Spinning at 4 RPM ..................... 114

13. Moments of Inertia about the Three Principal
• Axis .. .. .. .. .. .. .. .. .. .. .. ...... . . 1 5

14(a-d). Simulation Graphics: Set No. I . . . . . . . . . . . 122 - 126

15(a-i). Simulation Graphics: Set No. 2 ........... . . 127 -136

16(a-d). Simulation Graphics: Set No. 3 . . . 138 -142

17. Shortened Deployment Time. ............. 144

18fa-i). Simulation Graphics: Set No. 4 . . . ........ 145 - 154

19. Very Short Boom Oscillations. . . . .......... t55

20. Computer Solutions for the Harmonic Frequencies

of 1975 Satellite with all Different Boom Lengths 157

S21. Computer Solutions for the 1Iarmonic Frequencies
of 1975 Satellite with Different Length Boom
Pairs.............................. 158

22(a-d). Simulation Graphics: Set No. 5 ......... . . 159- 163

23(a-d). Simulation Graphics: Set No. 6 ........... 165 = 169

7



I

CHAPTER i

INTRODUCTION

In one of the Air Force Cambridge Research Laboratories programs to I
study the ionosphere, satellite experiments with wire booms have been

devised to measure and model the earth's ambient electric field. The
wire booms serve as sensors, an electric field being induced in them as
the satellite traverses the earth's magnetic field in its orbit. A signal

proportional to the unknown ambient electric field is also summed in
vectorially in the measurement:

Emeasurement V x R + Eambient R

where V is the orbital velocity of the sensor of satellite with respect to
the magnetic field B, and R is the sensor p,,sition vector.

In order to extend the wire booms properly and to maintain a stable orien-

tation for the experiment, a spin is imparted to the satellite. The vector
equation above still holds at every instant, and the desired ambient field

"imay be calculated provided the wire boom lengths and orientations are
known as a function of time. Attitude sensors on the spacecraft provide

information about the average motion of the vehicle, but the superimposed
perturbations and the orientation of the booms themselves are less readily

resolved.

This report addresses this problem by developing analytical and simulated

models of the satellite and wire boom dynamics. E-xperimental observations
may thereby be correlated with expected behavior during the data reduction

and evaluation phase. Control information during operational conditions
is also derivable for decisions such as extent and times of boom retraction
or deployment. Earlier works on different spacecra'ts have reported on

studies of electric field and ion measurement as a function of sensor and

vehicle attitude [4, 15 ].

This study is initially intended to support the research experiment CRL-22,

on satellite 1975, to be conducted by the Electrical Processes Branch of
,A'CRI.'s Space Physics Laboratory, for the global measurement of electric

fields in the ionospheric region. Feasibility studies, mass properties,

and design of 1975 have been reported by Boeing [ i. 2

The satellite has a relatively heavy hub (490.9 lb) with a shape resimblirg a
.ri-tangular box, with several sensors on rigid or flexible booms. Four of

the- booms are flexible, each carryingi. L tip mass (2 1b). and are deployable



pairwise. An opposite pair of booms would have unequal lengths only as
a very unlikely event. A wobble damper in designed to reduce as much as
possible any out-of-plane motion, and a Coulomb damper is also built in to
damp excessive in-plane boom oscillation. The hub spin is usually about
three RPM. 'Ihe mechanisms of deployment of booms and spinning of satelliteare controllable from the ground. More details on engineering aspects aregiven in Chapter 8.

A substantial flow of analyses has covered various aspects of satellite-
g ~ -~boom dynamics in the last decade. Examples are a study of spin dynamics

to determine stresses in rigid booms [ 8 ], and a study of maximum
nutation-precession angles, bending moments, and deflections due to
boom deployment [ 5 1. In contrast, this study emphasizes the deploy-
able taut wire booms, and attempts to predict mode frequencies, damping,
satellite spin, and boom deflections. Nutation-precession is assumed to
be minimized due to the wobble damper.

The dynamics of the 1975 satellite system are composed of a variety of
modes: coupled vehicle-boom oscillations, boor, vibrations, translation,
and precession about the equilibrium position, in addition to orbital motion
and self-spinning. Effects of aerodynamics are small at the altitude of the
satellite orbit (see Chapter 8). Boom vibrations have been determined to
be insignificant compared to the pendulum type coupled hub-boom oscillations
[ 17 1. Solar radiation induced oscillations and bending of wire booms is con-
sidered to be insignificant for thin wires, even though this solar effect has beenexperienced before in spacecrafts with tubular cables of lengths of the order½• of a kilometer [ 6, 9 ]. Earth's gravitational gradient induced oscillations
are also negligible in view of the short boom lengths (0 to 60 ft. ) [ 7 ]. In
practice, the signal measured in the wire booms will be affected by a number
of other factors such as shadow effects, satellite wake effects, vehicle po-
tential, and instrumentation effects. A systematic isolatiou of these factorsEu-.•-: is part of the daia reduction and evaluation loic, and is outside the scope

of this report.

This theoretical analysis includes the forin-lati on, derivation. and COtMputation

of all mode characteristics of coupled hub-boonm dvnamics. The vot"Puter
progf ramns written art, eapable of generating digital sinnulations ot time-
dependent dynamical behavior of the satellite system under diffcrent c x-
peritmental condition. hetaticall-, this work is summarized in t' flow
chart in FIure i.

, .-. • I
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Transient response of the system and insight into instabilities and dynamical
damping properties are derived using Laplace transform techniques on a
linearized set of equations of motion. This preliminary study is restricted
to the simpler symmetrical coupled or uncoupled cases, and is covered in
Chapter 2.

For satellite system dynamics in the spin plane, with taut wire-booms,
seven degrees of freedom exist viz. hub spin rate, hub X and Y translations.
and angular deviation of each wire boom from its normal radial direction.
Deployment of each boom is specified. The complete Lagrangian equations
of motion are developed for this system in Chapter 3, and result in seven
non-linear second order coupled differential equations. A complete computer
solution of these equations including special damper actions, arbitrary
deflection amplitudes, and deployment/retraction of wire booms was im-
plemented and is described in Chapter 10, the section on program docu-
mentation. Characteristic frequencies are obtained by Fast Fourier Trans-

form of the dynamic responses as a function of time.

In general, it is desirable to estimate all mode characteristics without
resorting to the solution and Fourier analysis of the complete Lagrangian
equations. Further, in-plane/out-of-plane interacting dynamical equations
become algebraically too complicated and are not attempted. Instead, eigen-
value techniques and orthonormal matrix transformations are used to de-
rive all the mode characteristics, both in and normal to the hub spin plane.
Matrices are of size 14x14 corresponding to the total number of degrees of
freedom of the system, however assuming minimal in-plane/out-of-plane
interaction, they are decomposed into two sets of 7x7 matrices.

The in-plane analytic solution is carried out in Chapter 4. In terms of the
deviations T1. in generalized coordinates qj where qi = qoi + Tni ' the
kinetic energy T and potential energy V are expanded in Taylor series.
For harmonic motions about the equilibrium configurations, terms of
third and higher order in 71i do not contribute. As a result, the Lagrangian
is given by

L - (T. . Ti - V.. ni. Ti.2 i,j ij i J ij . I .

where the dot denotes time derivatives. The Lagrangian leads to the
following equations of motion:

zT Tij + F_ Vi. Ti = 0

ti
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For nontrivial harmonic motion to exist, the secular determinantal
condition must be satisfied:

2
(letjV.. -W T.. 0

which yields the eigenvalues w. 2 and the eigenfuaations.

1

Alternately, a new set of coordinates ,. , so called normal coordinates,
: can be sought as in Chapters 5- 7 such that

and

VV

,2 J J

This is an algebraic process of the simultaneous diagonalization of two
quadratic forms. The resulting Lagrangian becomes simple and elegant:

L .2 W 2 2•.L= - w. • T0. )

2
From this it is well known [ Ii that w. are the eigenvalues, yielding the
desired characteristic frequencies.

Chapter 5 covers the case of inplane normal coordinates for equal boom

lengths, and includes translation. Seven eigenfrequencies are derived J
corresponding to the seven degrees of freedom. The symmetrical cases
that exclude translation, and for boom wire mass negligible compared to
boom tip mass, yield the familiar results:

w o (uncoupled)

•:• i (coupled)

0I

where L[,is the total moment of inertia. The uncoupled mode is triply de-
generate. The trivial modes corresponding to pure rotation and pure trans-

lation have been eliminated.

12C,--. -

,P.



Out-of-plane normal coordiuates are considcred3 in Chapter 6, and are
limited to cases of equal length booms and negligible interaction with
in-plane frequencies. There are again seven degrees of freedom
leading to seven modes, three of wh-ch - pure rotation and pure trans-
lation - are trivial.

Each of the normal coordinates is a periodic function involving only one
of the resonance frequencies of the system. The frequencies are found as:

8 9 10

/r¥ + r t 0 1 I
it 0 1

1i0 Coupled Modes

12 i
- ri.+r0 I

13 =0 Uncoupled Saddle Mode
1 ID r +jr

r:+: r -M+ 4°_14 0 Jelly-Fish Mode

These frequencies, together with the seven in-plane ones, comprise a
total of 14 normal mode frequencies of the entire satellite-boom sensor
system.

In plane oscillations with unequal length booms completes the analytical
work. This is covered in Chapter 7, again with the use of normal co-
ordinates. Some translation of the hub can be expected for all unequal
boom length cases, unless the opposite booms are symmetrically de-

ployed. Thus, in general, four distinct nontrivial eigenfrequencies
can be found. The behavior of these w-roots are revealed by plotting.

Chapter 8 establishes the background for obtaining the physical quan-
tities of the satellite-boom system pertinent to this dynamics study.
Chapter 9 presents typical results and plots. A number of support
programs were required, but the main programs only are covered in
Chapter 10. These include digital simulation of the satellite dynamics using
the complete Lagrangian eqaations including external and inherent non-
linearities; the subsequent Fast Fourier Transform to obtain characteristic
frequencies; and a scheme for synthesizing dynamic response from normal
modes with specified initial conditions. Appendices A through H support

various derivations in the text of the analysis.

'3



CHAPTER 2 -X

LINEARIZED RESPONSE OF THE SATELLITE-BOOM SYSTEM

2. 1 Effect of Deployment or Retraction

In order to obtain physical insights on the effects or deployment or retraction,
it is useful to study a. simple but analytically tractable model: the one-
boom satellite with no translation. The full-fiedged coupled four-boom
vibrating-translating satellite will be studied in later chapters. Both uncoupled
and coupled modes will be treated in this chapter. Laplace transform
techniques will be emr.!oyed with the assumption of small boom lengthi
variation, i. e., r /-I/r << 1.

m

rr
0

To formulate the problem, one starts by writing down the coordinates, velocities, :
and energies of the hub, tip mass, and wire boom in terms of inertial co-.
ordinates. Then a transformation from inertial coordinates to corotating
polar coordinates (r, €) is facilitated by:

....---. r +-o w,

The Lagrangian is then obtained, from which all the dynamics can be un-
folded.

The Lagrangian L of the one boom system is

L (I +rL i(m + pr) r+pL (mr +' P z + w[ (mr Z + P 4)

2 rZr4
144



.. " _ - . _ 7 r 7.. :"". - , -. " v• , .. " " - - .. .. .•:/'

_+ (m +pr) r z + Z +Pr + z (2-i) is
+P )r os- js

The r equation of motion gives the tension on the boomn wire. The

equation of motion is

d OL _ -k
dt 0 a4

•.. i.e.

.mr 2 +p P-) " +Zr (mr + P+ [ (m r +P )+

2

(mr +p r) r. cos] + w (mr +p 7 ) ro sin +A2- .

r2
,(mi +PT-- r k - s (2-2)

In the Limit p---0, 0 oquation becomes simplified to

mr , + Zmr + O[mr (r + r,)] + mrtO + 2mrre + k +

where sin4o'• ) and cos4)•i .- Z/2 i

The E) equation of motion is

.d aL aL
c dt D- ae 0

whore

(3, r3.e

IT - + (mr2 +P-"-) • + (m +pr)r • sin +

(m r + P-2 ) r cos 4)4)

15 :



s o that
2i r3 rZ .

rG -- - [(mr +p r ).+(mr +pT)r cos4 ]'.

-2[ (mr +p•) +m+pr) ro cos

IT. e + (mr +P p )r•osin* *Z _rý-sn -s
22lie(m:p "-roin, _pror sin¢_s,

For small amplitide oscillation, light boom wire, and small spring con-
stant, the. last three terms on the RHiS are neglegible. For simplicity,
we keep only the leading terms:

3 2
e= - [(mr2 +p.•-) + (mr + p -)r cosfl

2 03Z
- [(mr + p - + (m + pr) r cos ] 4 r - (2-3)

i•: ". ~mr (r + ro). 2 m (r + ro)• !
Limr = - 0 - IT r r+)1.

P0T IT IT +.

where the first term on the RHS is entirely due to boom vibration,
the second and third terms are functions of boom deployment, and higher
order terms are neglected. The result can also be obtained by considering
conservation of angular momentum of the whole system.

In case of multiple booms, they may behave in such a way that their angular
momenta add up to zero, so that the angular momentum of each boom is un-
coupled to that of the hub: we call such a state an uncoupled mode. Thus,

G = = - T (uncoupled)

and

S= = --- • -mr (r + r) 2m(r+ro)i•$ (coupled)

where
I 2[(mr+p2) "T -p- +2 ro + (m +pr) rocos r]

-2 (mr +O- 2 ) r0 sin-2

i6



Lim =2m (r + r ) +
p-->O

We remark that in the N-boom case the uncoupled g is unchanged be-
cause the angular momenta of the booms cancel each other, whereas
the coupled • equation is obtained by assuming m to be replaced by
Nm because all I 's are in phase. Hence, provided there is no trans-

lation, the results of this chapter hold for multiple boom cases.

z.2. Forced Oscillation Equations

7- =Substituting the above uncoupled 0 and the coupled e into the - equation
of motion, one finds equations of motion in variable q with 0 eliminated.

For uncoupled oscillation mode, one finds:

S+ r . r 2 + 2w + r 2  +
'(mr 2 +p-3) + 2f2(mr+ - 2 +

P2 122.
Sro, +m+pr )ro cos ]_(mr + ) ro sin, •
2 0 23 02 j m -, sn•:

.mr2 + L-+ (mr+p )r cos (mr +P r sin

r2• ~~+ 2w (mr +p •--)•+k•• +s4 0

For small ,we have sin4-- , cos 1i, ' 0 so that the above
equation becomes

3 r
(mr2 +p--) + [2f (mr+ -p )+k] +

2
4.( [bmr+ P T r. +s]

1:_ + +(rni+ r ro

!1•.' 2

which is of the form:

+ 2 (t)(2-4)

"17
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'V

This is an equation of forced oscillation, in which 2 is the square of
the natural frequency, ZP is the damping term, and F(t) is the term forcing
the oscillation.

For coupled oscillation mode, 8 elimination gives the following

equation of motion:

Smr3 mr (r + r) r2 3 2
•.i:. m r + -•m r2 + - - + (m r + r 0 cos.

2 .m (r + ro) rr•, + • 2r' (mr + -- + k -rz 4 P -

(mrp-:ir r 2  + 2r 2  .j
- 3I

IT I
r2 r 2 r2 m + r

PT + + 2pr

which is, like the uncoupled case, of the form:

+ z+ 2 2 o(t)

I

coupled from the uncoupled case, because 1/ L1T terms go to zero. Trhe •
forced oscillation equation will be solved analytically later, by Laplace's •transform method.

The terms •, 3, and F are listed below, including and neglecting wire mass:-

L .coupie~d cdse:
2

t2mr + p- - ) ro+S

2 r

mr

1$



[2i (rm + rZ-/2)+k]/(mr 2 +p.. r

2m p r3mr+-~
k/(mr p>

Fmrpt))rIzrr + r)p rZ)/Z r3 ]

~Z2 .3 r 2

ro / T IT A3k A

2
rm 1 2 2

[m~rro)(rr ++ r/, /2 + p

22
L wm AMr + r s

to>

Intelii * ,the tem p 2 and F are lite aor~oi

192



Uncoupled Case (Limit p - O).]

r /r + s/ mr) 1/2
00

k7+nr t< T

•'-i" " .i r 2= r2 t < v-

2mr 2  t> T

•'Fit) = -- 2c %[ m 2 ( 2

2rI~

C o u p le d m 2tr r r ° )20WOr (2-5)

02r

mr IT

•,•!: - 2 W. I

'•;,Coupled Case (Limit 0 )

2. -r 2

r 2rr 2 t <
0

2 t T

2mr I ]
F(t) 2w 0 r~ IT rn ( -r 6

rwo

r

20



2. 3 Laplace Transforms and Transient Response

For short duration T of deploymc:.It/retraction, such that r T << r,

the boom lengths remain approximately constant throughout the period T.

Thus, it is observed that the force term F(t) is of the form

F(t) r' x constant 0 < t < T (2-7)

where r is a known constant. Transient response function * (r, t)
can be derived analytically by Laplace transform method. The scheme is
to find the response ý (r, t) to the force F(t) .0(t) turned on at t=0,
and then solve the force free oscillation equation using • (r, T as the initial
conditions.

Using Laplace transforms, the forced oscillation equation becomes:

[+ = 2[Pe+t) ] (Z-8)

.. + (s 2 + s + )Q (s) - F

i.e. (s) F

s (s 2 + 2ps +92)

By partial fractions, ( (s) can be written as:

SF I
f~s) =s (S (+) +~ sp + j

where -

.Response function • of the wire booms is given by

Thus, the transient response function is found to be

-tj- 0 (t) -e (cosUt + -Lt sinllIt 4<t <

where 0t) W I t > 0
0 t0

2!



At t = Tr, in particular, the function • (T) is

~(T) 'j CO F ( stT + siS•,0 1fl•T

The next step is to solve the force free oscillation equation using * (T)

as the initial condition. Let us denote p p' during free oscillation,

i. e.

during force application (T > t > 0)

after force application ( t > r )

F(t)

0T t 0 T

time - time

For t >T , the equation of motion is of the form:

+ a'•i + ,.0 0

with known boundary conditions ( Tr) and 4(T).

For simplicity in symbol manipulation,-lot r 0 from here on. until

later when we restore t t +r, rt 0. By partial integration.

+ -÷•4 (t) I

: (t) I o-dte aij tt *e
4# -O)s (O) C~'L (t) fo+ade-5
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Therefore, the equation of motion is transformed as follows:

+ ZS +2) (S) = s4(o) + (0) W o(0)

or, y(s) - 0 0, S +0)W"I (0)]
(s++6 +• (s+W)2  IZ

110 0

where Q6 =Q?,

Thus,

((t) e P(O)e t CosRt + [ 0+ (0)j e- Vtsin% t

R.,storing t to t + T, r4 0 by shifting origin: we find

4(t) e- CO [i(t c S (t -T)J + {~Y ~ T e -(t

* sin -To (t-1)] t(t 1Z-0o)

0

where ( T) and . (r) are known boundary conditions;
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2.4 Physical Insights gained from these Results

With the use of a .simple model in this introductory chapter, we have
been able to derive some salient physical features of the satellite system
concerned. The inportant points are listed below:

1) Retraction is less stable, because r- is negative reversing the sign

of the damping term 3. (Equs (2-5), (2-6)].

2) Damping is prominent when boom is short because • is proportional to
:" 11r , [ qu. (2-5). (?-6)].

3) Force F(t) is prominent when boom is short, because F(t) is proportional
to itr. [Equ. (2-5), (Z-6)1]

4) If k is very larre,_ no oscit.'htion occurs, because then 4 (t) is an ex-
ponentiallydecaying function. For, let j3 , so that 12 = ia , where a is

real and o<obecause Q i i, and thei for -> 0, we
0o

have; from Equ. (2-9).
r { -i3t e -t -ecft at eat

"0 a) = -
- ~+ +4- .SF (9-.a-)t .- Zat

which decays expoun.intially.

5) The Amplitude of Os(eilation after Dnpv ent/I•etracti~n Pero.
denends on wiwn the deV ovmeit!retr.tior , because it > 'r)

is a function of o -C)[and*i (r), [Equ. (4o)J.
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CHAPTER 3-1

LAGRANGIAN DYNAMICS OF COUPLED HUB-BOOM
INCLUDING TRANSLATION

y

01

Yi -Sion s--lic-t r o mSsc
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fx, urc !. Spinni Soriat~sintc-Wre Uov $st 'Pe

a and Z Can tm omitted i.o oit in-plane dynamric

o Ccs :ntcr of hub
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8 = Angle subtended by the straight line defined by 0 and the exit
point of the first boom w.r.t x-axis in earth's inertial frame.
At t=0, Q 7, initi-illy, and 9~ initial angular velocity of the hub,

=ri:,i Polar coordinates of boom-tip mass (i - th) as measured in
corotating coordinates. The i's are chosen so that initially the
first boom subtends an angle 9 0, w.r.t earth's x-axis.
4i (t) is the angular displacement of boom i at time t.

M Mass of hub

ni Mass of a tip mass

ro = Radius of hub

-I =Moment of inertia of hub

1T •'j.otal moment of inertia of system

s Snring constant of boom wire

1k = Air drag constant, (for air drag on boom).

P Mass density of wire

L =Lagrarigian of total system

L 0 Lagrangian of hub

L. = Lagrangian of i - th boom with tip mass (due to pure rotation
I lonly)

L/ Lagrangian of i - th boom with tip mass (due to cross effect
of rotation and translation)

A. -r 2r. + pr 3/31

i ri + prig/2

Di in + pri

a i), (i 1 1'... 4)

}• •i "0 + bi
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Velocity relative to inertial axes

Velocity relative to rotating axes

Translational velocity of moving axes origin w. r. t.inertial axes

The vector equation relating to motion in a rotating frame and that in
an inertial frame is

r = R+ r±wxr_ (3-i)

where j is the velocity in an inertial frame,

R is the translational velocity of the origin of the rotating frame,

r' is the velocity w. r. t. rotating axes,

w is the angular velocity of the rotating axes.

Note: All four variables above are functions of time t.

In components, = X + X- Wy' (3-2)

yFY + Y f WX,

Note: These equations (3-I, 2) can be derived by considering infinitesimal

displacements ( and therefore derivatives) in the inertial frame.

It is convenient to change ( xi, y. ) to polar coordinates ( ri, 4i ), but

leaving ( X, Y ) unchanged in rectangular coordinates.

x.= r cos(4i. + + r cos (6.+0) (3-3)

yi r. sin( 4•i+ 'i+O )+ r sin (6.+ 0)

where 6.=(i- I .(= ..... , 4)

Let - ¢i + 6 +0 , a=( i+0), €i = • +

1 1 1 1
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x r. cos0. + r cos®a.
1 1 1 0 1

y= r s in C + r sin.
1 1 0 1

x r r. cos op. - r. s" in . r s in (.0

0 11
y.=r~~~sin sin 6~o~ '0 cs

.2 .0

1 1 1 1 1 1 11 1 0 1

+ r csin®. E
0 1

y.rh2 nrta ram.os.. r i . .+ co . '-rsn®0

1 1 1 1 1 1 1 11 1 08



3.2 Kinetic Energy of a Tip Mass

Kinetic energy (K. E.) of the i-th tip mass is

'2 2K. E.i1/21 [(X +x + (+~.

1 2

-/m (X +Y )+1/2 m~ +y.)

1/2m (2Xi. + 2Yý.

where the first term is the pure translation term K. E. the second

term is the pure rotation term K. E. ot and the third term the cross

... 1 ~term K. E.css

2 '
tranls

K. E. - Im +. i2)rot1+y
2 2.2 2 * 2

=1/Z2M[ +r + +r. (6+4. +
1 0 1

2 re (r O+4.Cos )+r sin4))

which is independent of 6.

K. E. M[O(r cos C + r cos &I Y [r. sin (.+r sin@.]X) +cross 1 1 0 11 1 0o

co 4 r1 sin-D 4). )+

Ssinc. + r. cos~. * Y

For boonm wire, one replaces(n+i

n s drprn
m0 (n +i) ( 4
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To show that K. E. of hub K. E. + +K.E.trnlto without any

cross term:,

K. E. =0
cross

Proof (i): Take x axis to be parallel to the translation vector

translation

'71 Take 2 elements opposite and equidistant from center of
of hub, their velocities are

and 6 + , )respectively.

2
In K. E. , one needs ZJ(velocity). for all elements. Since cross terms

2 j
cancel in (velocity), for all opposite pairs,

;.K. E. total K. E. rot +Q.E.tasE. D.

Proof (2): Let v =velocity of an element of hub
2 .2 + 2 02V + +z

where 3F X -

v2 2 2 +y2 + 2 '2+ý +2 x

K. E.u K. E. ro.+K. E. trn.+K. E.crs

where K..E. W /P drr2 dOdo sinO 2w (xY -X)

c ross i
2

=pj crr dO dO sinO (r sinG cos4 r sinO sino'X)

'-iTr

=0 Q. E.D.
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3.3 Total Lagrangian

The Lagrangian L of the entire system can therefore be written down

as follows:
I A' . I

L =L (eX,Y) + Li( + +

1 4
S 1, r ,1 1i, 4i,., X,6) (3-5 ) 4

where L is the Lagrangian of the hub, L. is the Lagrangian of the
0 I

boom-tip mass due to pure rotation, and I" is the Lagrangian of the
I

boom-tip mass system due to cross effect of rotation-translation.

L. 1/2 1 0 +1/2 M (X +Yý)
00 .

L.=12 m 2 2 +ri~ 2
L. 1/2 (m + pri2 + 1/2 (mr. +P_ +

2•:: ~2 ri2 .•!
(mr + Pr ) + (m + pr.)r r .sin . +

1 3j~"s 0 1 1i

(nir + Pr' rCos *. $.] 1/2 S,. +
1 2 o 1,

3 2
r2 ri

1/2 ;2 (mr.2 + P ) + (m + pr) r + 2(mri + P -2)r cosi .i311 00.<

L= 1/2 (m + pr( + ) + [(m +pr)( r cos. Y-r sin. X)+
* 1 0 1 0 1

.i2
(mri + P ) ( Ycos i. "X sino .+)]+

1 2 12

2

The Lagrangian equations of motion are:

d 81, 01L
0 equ: _7O = 80

- -equ: d. QL al8, =-1¢@ (i = o #,4)

dt 0 "- "'

r. -equ: d al, -al T 1, 4)
dt ar. ar.

1A
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X -equ: d 8L aL

X-eq-- -L ---- -0 if there is no air drag due
,'dtX to translation)

Y -equ: d 8L 0L
dt 8Y -- y

The X and Y equs can also be obtained alternatively by considering
conserv-,tions of lineam momenta in X andY directions respectively
(see Appendix A).

The e-equ. can also be obtained alternatively by considering conser-
vation of angular momentum of the entire system.

At high altitudes (ionospheric for satellite 1975), air drag is neg-
ligible (see Chapter 7), so that k is mainly due to hinge friction
and k is negligible. From here on, we use k in place of k and ke

is neglected.
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3.4 6 -equation of Motion .0

"1 6 [ (DE , A . 0 ®. + B rCos (. + + [Z ( 0 + r. s +
1 i0 1 1 0 0 2

D. [B( inZ Y cos4Z s4. ) + D.4)r (X Cos@,+ sinGc.)]

.II
11t 1 11

S.L 4
7t [B- ( + cos+. - X sine.) + D. r (Y cos®. - +sin.) I

0ii 1 1 1 0 1 1

d aL =i:i + •: [* *8 - o+$.)
-:• i~ [A i~$) +A.z (+4)")+ B. ro s (20+4).)+

B. r cosO. (26 +•) -B .r sin (2 + ;i) +

D. r (r + r. sin) ) + D. r (r + r. cos4.) +

B. (Y cos•.- X sin•.) +

B. (Ycos4. - Y sin. [O+ Cos +

D. r (Y' Cos. - X sin®.) +
:.1 0 1 1

D. r (Y cos. - X sin®. - Y sin®e -X cos@. a )] (3-6)

Since total moment of inertia of the system is the sum of moment of inertia

of the hub plus those of the booms with tip mass, therefore the total moment
of inertia is: 3

4 z r-i e
I =I +i [ (mr + T + (1m + pri• +

20
ri

201.1 P --• r cos@ ] ) 3-7)

4

e. IT I + (A. + 2B. r cos~i + D. r )

33
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This expression is nov~put into the R. .H.S. of equation ( 3-6 )

given on the previous page. The 0-equation of motion is then written

as follows:

d aL 8L .d'--- "L = •T 2(e+))(•. z+Dr cos4).,

B. r sin 4P.) + *B. r sin4i 4. +1 0 1 1 10 11

C(A. + B. ro cos C)) + pr (i r + r sin ).i)I11 1 0 1 01 0 1

B. (X sin ,. - Ycos1i) + D. r (Ycosei - X sin.) +1 1 1 10 1

pr° ( Y cos®. X sin e( 3-8)

O if there is no air drag due to rotation of hub

.4 if there is air drag.

In the limiting case, let X Y 0, one obtains the "no-translation"

version of 0-equation.

3
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3.5 equation of motion

8L r 6 D.r cs BS. sin~ r Bsi

11 .. 0

D.r. i'- B n 16e+ 4i)+D Axs] • +I 1 11 1 1

[D. r.Y -B.X(0+ 44coso~

r 0  D. i.cos4~ B sin4.* B. sin ~0) -s. -
0 11 11 1 11

(0+ $i) B. (Xcos P.+ Ysino.) +D. r. ( coso. -Xsin~i)1 1 1 1 1 1 1.}

6Li

=L 0. A. + 0 (A. + B r co-i ) - B, (X sin - Ycos €.

A.(1• +i) + Bi[ r cos s-(Xsin.- Ycos .1]
r C 0 1

Sd •L A. ( •+.)} + A. ( ,'+• j + B. •r cosi + .

de1 1 111 0 1

:-:. •: l~l [( Cos +' sill 0i x y÷ ÷ i*i"YCos 0,] •

:. 0" A. + B, r cos ,!)+ A,.0 + ZB. {.( +. ÷

e. o j r coso. - B, r i sini + D. F.(YCos . -X Sino)13 (XCos +Ysill)(0 + (*X* sin . COSQ)

35S
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Collecting the results, we therefore have the *. - equation of Motion:

d OL 8L . 3 + to

A'.' +ZB r.(0+0i) +0(A.iB. crsci) +j I I 1 0

s *+ 0 B.r siný. + B.( f+'• cos 0 . Ysin*
1 10 1 1 1 11

+ B. [-(5+ ¢ ) (X cosD. + sin A' + Y cos O. -X sin 0

S.~~ Z

- A.'. + ZBr* 0+. +so. + 0 B. r sin, +

e (A. +B. r cos€.) + B. (Y cos 0. -X sine.)
1 1 1 1 3 1

Sk• (i 1 ,...,4) 3-9

In the limiting case of "no-translation', one lets X. Y 0 and obtains

the 4. equation of motion.
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3.6 X-eg uation of M otion . ' "..

aL
ax 1
aL - Dsl+ jI[ (m +oPr( + cos 0 -Or
7 -a1 1 0 1

X+ L ( .pcosO.-r r sin(;) +(. ++ or) sn.

. aa

m + [PcsO r * i•. m o -) |

or c ioso(r [+i P r 0+ inna
161

rx +prSI

The X -equation of Motion is

d tE 11aL

r 40 4) j~ stos Cos

t0 it tere is air arag duao ti rauslation

37
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* .* *1•:i

3.7 Y-equation of Motion

3lL
ay 0

* 4
• .• -' 9L.

= MY +t f [(mnt rj(t+ sin. + r cose.) +9Y 1 i i. o 1

(nix, +Py2) (+4.)Cos

d 9L
idt y + T.t + t s• •.. 0r1

(an +o r.) Y +"i. coso [O 4.1 + I"r C" osQ-1.. . 1 i 0
a' tot' [~ A+$jlcos*)+

ro sine + Or Cor

c

I i

io% r 4ý+ ICos4e

r sin*% 4(ar~p )Ih*

S0 it .•hcre is neig;ibic air dr,ýS duc to translation

I L



3.8 - equation of Mot;on

fit. 1/2_( .2 2#2 a•r. y/r. +r 0 + . (13 0 +Pr r Usiln +

"D r"s O( 02 41 2 X Y ) + ( X o s + y 5 n

1 0 1 1 1 '

* 0

D, (r sn ,+ cos€ + j2in+ (r cos. Y r s sine. + D0 1 0 1 1 1. i + Y Cos 0. X sine.)

r si i OS . Y in . "i

, a, . (or + 0•sin cos.xrl )

4 01... u .-

-d -o) ~+r Oin~ .(r 0 sinO + r cus4. ] +

D-. ('X cOs y. 4VSi"~ + D. X cos,:. + Y sin ýP. -Xsit. 4 ]

r %A (I W .

dt 6r cost + V:

-Cos

a a cat.1 Tt 2 I

Cos - 0Ia

I 4



CHAPTER 4

ANALYTIC SOLUTION - FOR INPLANE OSCILLATIONS

• The Lagrangian equations of motion for inplane satellite dynamics form
a set of seven coupled nonlinear differential equations, which can be
solved numerically on a computer. To gain insights into the physical
behavior of the system, analytic solutions are useful. Simplifications
of the problem are necessary for the feasibility of analytic solutions.
The simplifying assumptions are as follows.

i) No external damping
2) No deployment or retraction
3) Equal boom lengths
4) Harmonic approximation

In assumption (4), the boom angles Oi are of the order O(E), oi are also

of the order O(E). Since 0 = c~ at equilibrium, 0 itself need not be small,
but the deviation from coo is. Thus, let =o + 8' where 6' is oS the order
0(e). The approximation scheme is "all terms of the order O( E ) or
higher will be discarded in kinetic and potential energies, and, all terms
of the orde- O( :2) or higher will be discarded in the equations of mo-
tion". The results arrived at by using equations of motioa should be
the same as those obtained from kinetic and potential energies [10, i2].

4. 1 No-Translation Formulation

We first consider no-translation, and later translation will be included,
so that the difference in results due to translational effect can be obtained.

in harmonic approximation, the matrix equation of motion (page 31)becornes

AX =B (4-1)

where [A]= "a 0 0 0 bj

0 a 0 0 b

0 0 a 0 b

0 0 0 a b

b b b b c
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[B] = p

43 -P ) 3

Woo
where 0 ' =

a mr +pr )3

m2 + p2/2)b mr + pr /3 + pro (mr +p

10+ [Mr2  pr31  + Zr0 (mr +prZI +pr2 (M+ pr)]

p = (mr+ pr/2 r 0

Since we expect the motion to be oscillatory, we attempt solutions of the
fo rm: -

4)it) 4)(t=O)e

and

O'(t) 01G(t=O0) e t

where the frequency w is to be determined.
Substituting the solutions 4j (t) and o(t) into the matrix equation of motion
AX =B, we find

a 1) 0 0 b W2 P )

o a 0 0 b 2~ 4) = p
0 0 a 0 b w24 )

0) 0 0 a b w2 4 P)

ýb b b b c) 0J
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This C4uat.,n is just a set of five simultaneous equations:

2au--p 0 0 0 b W €

0 aw_2 -p 0 0 b 2
2_ 2

"0 0 aw -p 0 b 4 0

2 2
0 0 0 aw -p b w4(

S2 2 2 2 (4-2)
Sbw bw bw 2  c 0

"In order that nontrivial solutions exist, the characteristic determinant
must vanish. Therefore,

a 2
det awu-p 0 0 0 bw

z 2
0 aw -p 0 0 bw2

0 0 aa2-p 0 bw z 0
2 20 0 0 aw -p baw

baA bo•2  baA bA CCU

The determinant can be calculated by using Laplace's expansion. The result
is: -

2 2 3 2 22

S(aw -p) [(aw -p)c-4 ] = 0

This polynomial equation yields three distinct rooits: wit w2 ,' w3' viz.,

i0'. W 2  P
a ~~ ~ Ia .4 /(a c)

where w is a triple root.
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These are the frequencies of three distinct modes of oscillations described

by the five variables I( O1 2't %P3 4 ' ). The triple root corresponds

to three possible patterns of boom motion in such a manner that the total boom
angular momentum is zero. The third distinct root corresponds to coupled
hub-booms oscillations.

Lim= w (uncoupled) [Triple]

* r

Lim "'= w r0
3 o 2 (coupled)

I p-7Or OT

The hub-booms patterns of mnotion (modes) can be found by substituting the
frequencies into the set of simultaneous equations of motion (equ.4-i). We find

For W = W i' • =0 , = arbitrry (Mode i)

4
For LJ W 2' 2O= 0 0 0 (Mode 2) [Triple]

For W • = TVe4 i=i, --- 4 (Mode 5)

4b

4.2 Harmonic Approximation with Translation

In harmonic normal mode analysis, all the responses to excitations of

modes are infinitesimal. This is why we have separated 0 (t) (hub angular
velocity) into two parts: 4 and e'(t), the latter being the infinitesimal
response to mode excitation, where the former (0' = o) can be arbitrarily
large and is not a part of mode excitation itself.

Likewise, the translations X and Y should be written as X =X + X'and
Y = Y + Y,' the dashed variables being the infinitesimal response to ex-
citation of modes. The condition or constraint that the center of mass
remains stationary is

4
MX + iOi (m+Pri) (X + cos Zi )0

where i = 0 (t) + 4i(t)+ (i-i) -+

Let X X + X1, where

"M + " (m + pr X° (mr.+ Pr 2

p 1 =i Xconst

and X' =X-X
0
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The time variable in X0 is 0(twhere 4)j constant, ab that X is due to hub
rotation and not mode excitation, while %I is the infinitesimal response of the
order 0 (,as ~, are. Thus, the inpiane oscillation variables are

~1' p2' )3'4)g X, and Y; There are 7inplar~e variables, and there
must be 7 natural modes.

From the equations of motion including translation, we have the following
matrix equation of normal mode oscillation in harmionic approximation:

a 0 0 0 b -d e -P 0)j p )

0 a 0 0 b -e -d W ~2 -

0 0 a 0 b d -e 2 43 *-P4
o o 0 a b e d 44 4
b b b b c 0 00

-d -e d e 0 rn 0 2 10 (4-3)

e -d -e d 0 0 m W

where terms of the order 0(( 2 ), 0( /t)or higher are neglected. The
notations are as follows:

2 3
a mr + pr /3

b =mr 2+ Pr 3/3 + r 0 (mr + p r /2)

4 2 3 3 zC I =1 +. E4 mr 2+ Pr +2 r. (mr +p ~ +r (m+pr
3 30

2
d =(mr + P r )sin 0

2
2

e =(mr + r~& p cos E6
2

4
=M + m.=M + 4m

i=j I

p =(mr + pr 2/2) rw2

In order that nontrivial solutions exist, the characteristic determinant of the

above matrix equation must vanish: det I A 1 0
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Therefore, 2 0d -
•i:.det aw -p 0 0 0 b2 -dw ew - 0

2 20 wp 0 0 bu7 .ew 2

:0 0 a -p 0 b0 dw e0

2 2 2 2-o2 -e2 d2 e2 0B•o
2 2 2 2

ew -dw -ew dw 0 0 W

"Using Laplace expansion (Appendix D), we find the determinant gives:

2m z2 2 2 2) j
~6[/(aw 2) 2 2m + pL2i (aW -P) Law c=

•. ~~~~~ _o(o 2o(r a p o p) c -4b~a =0

The roots of this polynomial equation are -

Wj 1 0

W = 0

"• = 0

•:. i- 2(mr +pr'i2}Z

1a
t; w 6 w • 5

7' Fa i-4b' (ac)

Substituting the frequencies i ( eigenvalues ) into the matrix equation
of motion, one obtains the corresponding eigenfunctions, which can be
put into a matrix form [r.].
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B= 0 0 0 £ I I i

0 0 0 -i i -i i

0 0 0 i -I

oi 0 0 -I -I 1 I

1 -o o o 4b• , "10 0 0 0 0 -

C

0 1 0 0 F -G 0

0 0 i 0 -G -F 0 (4-4)

where F = 2 d+ e)

G =Z( e d

One readily verifies the following matrix relation:

BT A B - diag()
1 7

Explicitly,

0 0 0 0 1 0 0 .P0 0 0 b -d e 0 00 1

0 0 0 0 0 0 0 #O-p 0 0 b -e -d 0 0 0-i - 1

0 0 0 0 0 0 1 0 0 au-p 0 b d -e 000 1-11

1 1 1 -1 0 0 0 0 0 0 ael-p b e d 0 0 0 -i 1 1
1 -1 -1 0 F -G b b b b c 0 0 0 0 0 0 -4b
1-1.11 0 -G -F -d -e d 0 0 It 0 10 0-GO

1 01 1 $ b 0 0 e -d -a d 0 0 0 0 o-0 o

aj 0 0 0 0 0 0

0 Wa 0 0 0 0 0

0 0 03 0 0

0 000 O4 0 0 0

0 0 0 0 UD" 0 0

0 0 0 0 0 W6 0 (4-5)
0 0 0 0 0 0 W13
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where (ai have been given on the previous page. There are three zero
frequencies, three non-zero frequencies, and two doubly-degenerate
frequencies. The natural modes and their frequencies for in-plane
dynamics are displayed in Figure 3.
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CHAPTER 5

"NORMAL COORDINATES FOR INPLANE OSCILLATIONS

5. 1 Harmonic Approximation with Matrix Formulation

In harmonic approximation, with no deployment/retractibn, no damping
and no spring constant, the full Lagrangian L as given on page 31(Chapter
3) becomes simplified as follows:

4L =L + E (L + L) 15-1
0 i=i1 1

where
L 1 -2 1 2+

-0 - 0 +0 TM(X +2)

3 2

Sr i + 6[ (Mr. + ri7 Uari+ PT) 1 -- .+ (nr. + P-~

*1 2 [2 r-3  2
r cos O. *.+0 )m,+P-ý)+( p r +Z(mr. +

2

P-1 r cos
'- 0

+ 6[(ni) Pr. (r0s

(= -z+ Pr.)C+t+ [( pr)ro jYr sin a.X)
1 2 1 1 0 0

z
r-

+ + P-p) (Ycos 0i " sin-)] +

p-) + P-:1 sin 0. + Y Cos0.)

Further simplicication of the harmonic approxiimnattd Lagrangian is achieved
by observing that:

4 4
cos •p, C cos (+(i-i)-0)+ 0

4 4
Sin sf, -sin (0 + l- 1).-- 0

4 r.3 r- 2r
" and . 1)+i=I a +P"T ) + imr + )ri + 2(,ir + r o

49
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which is a constant in case of no deployment/retraction. Using cos 4
1- 4. /2 in harmonic approximated, one finds a simplified Lagrangian L

as given below:

0i *Z 4 ( + +Z) + 4 i.
L 0 +ymr +(M .=

3 3 2

ri ri
P-) *# + [(mr +P-• ) + (mri ro + P"" ro

3 - 2 1

2

o. ~ ~ ~ ~ a 4 +m +P ){oi.• -i•. ) ( 5--3 )

(Mr + 4 r( m r .+
1k + o i=1 ~ rlcs.Y

•r.2

si1 M. - (o sin'Z.0

Neglecting from the Lagrangian all constant terms, which do not contribute
to normal modes, we find the Langrangian is

a rr)44.

+ [ r.2 r 3r1 (nr. ri )r 21

iP -3 + ON104

4l ri .a

+2m[. + (•2r+ (C) J. Y siPo)

4 

1{Z.n +P +Pco)scsin .flnk.J
t s= i

i r
+ P-)(sOYsn.X 053

0 1

servaion o linar aunent (Apeni A .ehae



In harmonic normal mode analysis, all the responses to excitations of
modes are infinitesimal. This is why we have separated 6 (hub angular
velocity) into two parts, "- and 06 , the latter being the infinitesimal

response to mode excitation, while the former (60, = wo) can be arbitrarily

large and is not a part of mode excitation itself. Likewise, the translations

X and Y should be written as X = * o + and Y 4 + ?' the dashed

variable being the infinitesimal excitation. By considering that the center

of mass remains stationary, we have:

4 4
[NM + X (m+pri)]X = -X (mri + pri/IZ)cos0i

•=1 I d

where Oi:= 0(t) + *(t) + (i-l)-

Let X X 0X'+X where

(Mi +- (m 9JX01 - Ž (n• + pr/i ) cos O
1-4 =1 =coast

x'x o ( %O -4Y

"The time varying quantity in XQ is O(t) only, no that X0 is not due to mode
excitation, while X'is the infinitesinmal rcsponse. as 4i, a ar't irfintcsin
.0 Cc). There , in har nic otormal mode abalysis. the tnxde variable's

are $1, *, 03, 040 of X, nd Y'Vas far as in-pltae %odes arc Concerned.

Subtracting the part due to constant hub rotation a, we have:

4

*1 i~t -

4'4 r o, )
- Z. (air. 4 P-r)4O+.)c' c
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As a result, the last term of the harmonic approximated Lagrangian as

given on page 50 does not contribute to the kinetic energy, for,

i ~ ~Llsttr).. (mr. +P-)(10 Y" costD. -OX sinai) .

2

+sp , 'uzCos I+0Xks in qbýj

i:i

. terms not conaributing to normal modes

Since S cos a- 0(() andZsin v0(t ), the first sum on the R. H. S. is.
13

of the order 0( C ), anti is therefore neglhsible. The second sum-, however

is of the order 0 (t'//t). and. for ecamal boom lengths case, b-comes

4 r.

(las tem 2I

W "

+ i I4+ j
.4,__ - tl,7 "@+"++.

Zh..+;

Thud, the harabokuc .&pproxilhated L~ap-'u ~iiwi becotneu

4 r .

tc0r " 2 . sIn M X').j I '-y )rP

"2 7

(CO _,I 4- jn r; rii

A 2 0, ) 0
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Iii matrix notation, the Lagrangian in harmonic approximation is:

!a 0 0 0 b Ad e

L=( 1 2 3  4 4 X' 0 a 0 0 b -e-cl

. 0 a 0 b d -e

0 0 0 a b e d $4

b b b b c 0 0

.- d e 0 M 0

e-d -e d 0 0 "

~ 0XY'~P 0 -q 0 0 0 0 j
0 ýi 0 0 000 1l
-q 0 -=q 0 0 0
0 -q 0 ýi 0 0 0 4 ,t

0 0 0 0 0 a o X

0 0 0 0 0 0 0y

whe . 3

+I
372

E0. 0

lI

(mr4P) *

2 2

K - -

•L- . -< -• ---. •. . . . . - - . - • -. : - . .. •. .. q



",ii

The Langrangia-i L has been written in such a form that the matrices [T]

and [V] are manifested.

The orthogonal matrix is [B] 0 0 0 1 1 1 1

0 0 0 -1 1 -i 1

0 0 0 i-i -1 i

0 0 0 i-i (5-5 )
2(d +_e) 4bif!where F= 1• 0 0 0 0 0 -

G 2(-d+e), 0 1 0 0 F-GO 0

0 0 1 0 -G -F 0

5. Z Orthogonal Transformation of Kinetic Energy

[B] is not orthogonal in the usual sense:

T
ie. [B] [B] / I

[B] should be orthogonal in the unusual sense:

T"[B] [T] [B] = I
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[T] [B]= a0O 0b -d e 0 0 01 1 ii

0OaO00b-e-d 0 0 0 -i i-i

00a 0b d -e 0 0 01 -1-i1

O00 0a bed 0 0 0 -i-i1l

b b b b c 0 0 1 0 0 0 0 0 ~4b

-d -e d e 0140 0 10 0OF-GO0

e -d -e dO0 01 0 01 0 -G-FO0

4bZ
- b -d e a a-dF-eG a+dG-ef a--

b -e -d -a a-eF+dG -a+eG+dE - b
4b 2

b d -e a -a+dF+eG -a-dG+eF a-

b e d -a -a+eF-dG a-eG-dF &

c 0 0 0 0 0 0

0 0 0 -Z(d+e)+)ýP -2(d-e)-GM 0

0 0 74 0 -2(d-e)-G/4? Z(d+e)-/ýF 0

[B] liT] [B]

00 0 0 100 b -d e a a-dF eG a+dG-eF-

0 0 000f0 b -e -d -a a-eF+dG -a+eG+dF a-A~
0 0 00 0 01 b d-e +a-a+dF+eG -a-dG+dFa-4

1 i1 -0 0 0 be d- -a+eF-dG a-eG-dF a- 4bZ

i -i -10F -G c 0 0 0 0 0 -0
i-ii 10 -G-IF 0o 0 0 0 0 0

00 0 0 0~ 000

4b 0 0 0 0 0 0

0 o 00000

0 0 7ý 0 00 0

0 0 0 4a 0 0 0

0 00 0 DO0 0

0 0 00 0 04(a- 4)
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where D 4a -2(d +e)F +2(d -e)G 4a[i- 2d 2

2

4 4[a -2(mr + )2y

The above result of [BIT [T][B] is not unity matrix because B has not been
normalized. It would be unity if B were normalized; viz., normalized [B]=

0 0 0- vV V

0 0 0 VP-Vv Y

0 0 0 -P -v V 4b(56

S0 0 0 0 0 -yC

2.0 OFV GV 0

where

i

P

2 j!a 2(mr+P-2
M + 4m

With not much confusion hopefully, let us still use [B] to denote normalized
[n]. ,''w, this normalized [B] satisfies the unusual orthogonality relation:

[BT[1][T] [B] [1] (5-7)
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I' Now, we can define a new set of coordinates .i related to the original

coodinates j.# E, X'/ Y by the equation:

2 00 0- V-V 'Y
. 00 0 • v Y

0 0 0  V -V V 4

0 0 0000v• o" • o oAoIooY(- c•' g5

0 ý. 0 0 Fv -Gv 06

Y 0 0 P-0 -Gv -Fv 0 7 (5-8)

where 9i are the normal coordinates.
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Limit: p- 0

.b - mr(r+) r)

C

d -- r sin w t

e -- nr cos w. t

•: •-~ M+4mn

I I

" •T •lo + 4mn(r o)

I 0

z=iiF I0

IM + 4m

i ______ =r 1 Mm +4rn2

2 r 2-n2m r 2  2r =M2r+2+rrn
(M +4m) M+ 4rn

& • m2

= i M+4n Mý M + -- i • + + O( ))

Mn
for small - << M

The kinetic energy K. E. in terms of these normal coordinates is:

-iK. E. _L [[ ]T[(B]T[T][B[5]
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But the unusual orthogonality relation is:

[B]T [T] [B] ( [I]

Hence, the kinetic energy in normal coordinates becomes:

7

2 ii (5-9)

where [ i] = [B) [41

The inverse [B]" of [B] is calculated in Appendix F. It is

i b b b b 1 0 0
S[B]-= -- - c--a

U =cc ca ca

- F-G F+G F-G F+G o 0
4p 4p. j. 41

F+G F-G F+G F-G o o
4iL 4~ 4i

4 " ". " 0 0

•[• "41• "- - -• 0 0 0

4 v 4v T 4

1. 1 0 ~ 0 0
4 v 4v 4v

I _ __ 0 0 0
4Y 4Y 4Y 0

where (mr + P-L-r + r (mr + P-I2
b 3 02

lca

F +G e (rn'r+ prz/2) Cos wot

4 j All M + 4(m +pr)

F-G d (mr + pr/2) sin 0

4M + 4(m + Pr)

59



Ir3

•.,.•' •/ ~r3z• + ----"4P2 23

2r 22 3 -' 2(mr +P- -
4v (mr2- M +4(+ Pr)

4[ (mr 2 +pr 3 /3) +(mr + r 2 /2' t]2
4-y mrr + -- ) -3T

Limiting Values:

Limit .... O b mr (r + ro)

mr cos w tF +G o

M + 4mn

F - G mr sin wt

4) a
2+ 4mn

42 2

i--L-~~~ / u 2~1MnirZ +2nm2r2

2 M r M + 4m

-.- M 4r- -1- I
2 4m r rr 2 (r+ to) 2 •r r2

4y 2 M 1 iT - 2 171
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Therefore, the normal coordinaLcs are:

c a # + 2 + 3 + 4) +O

_ [-(F-G)41 (Y+G) 2 + (F- G) 3 + (F +G) 4 ]+-x

(F4-(+~ +(F)G +4Y
t3 = _4• f +3¢ (-FG),O 2 (F + G)ý 3 + (F - G)€ 4]+--y

t4 = •' 2+ 3- 0 4

t5 +

'-, I~(,IV 4 )+ ,,,-43 - €4)

4 v 2 '_ 3 + 4

ii S 6 _ 5-4 .) 1 10

4 0 + 'p + + 5+ 0
ý7 4-y 1 2 3 4

In the limit P -- 0, the normal coodinates are:

- inr(r + ro) 0 + + + i4) + 1T e'

i! + ý2+ f + 44)+
-IT-

2 -M-r [sinw t - 2 cosw0 + 3 st +  + co t] +X 41Mf-+-4;m

0 r [ o 0 0s3 si"u t + 04 Csi ot

"•\r riM + 4m

m r4 +234

4- M++ . " +4 1
'3n- r'

"-46 -2-- .1 + 1  + + b3 +4"h

10 1' +, +% ) + 04
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5.3 Orthogonal Transformation 
of Potential t nexg

IV] 15 0 -q 0 0 0 where p (r +p ) ro2

0 . 0 -q 0 0 0
-q 0 0 0 0 0 

2~ (nr L 2 2
0 0 0 0 0 0 2 P g

0 0 0 0 0 0 0
[0 0 0 0 0 0 0

0 
0 0 0 p 0 0

0 0 o o - -

0 0 0 4b

0 0 0 0

0 0 0 0 0 0 -Y 4b

0 T0 0 F0v G 0
0 0 0 Gv Fv 0

0 0 0 pp - Py
0 0 0 pp A • pA

0 00 0 0 0

L0 0 0 0 0 0 0
0 000 0 0 0J

(0 0 000 00)

0 0 0 0 0 0 hr~p4

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 .0 0 0 heI p÷q

0 0 0 0 0 0V2 0

0 0 0 0 0 0 4p 2
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Thus, in normal coordinates, potential energy is:

T

2 91- 97

*** 17 W2 f9i

22
a 7

6

7

SI 2 2

:. potential energy P. E. I V '= o2 9. in normal coordinates.

% the Lagrangian L in normal coordinates f, is in the form:

7 A

L2 2 2 Al

A

where the normal frequencies w. are given by:
1

.Wt 2 =3 0 (Triple degeneracy: constant rotatioi,
constant X translation, and constant
Y translation)

w4 1 4$2p 4
L r Uncoupled ode: angular momentaLira w w

p-oV r- of booms cancel cach other]
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5 4 aa

r+r r + ro n (r + r0 )2

Lirn = ro (1 ))forsnall <_ <
o 0  r

0

w6 5

7 Ia -?

ac

- oir 7 w r I |Couples mode: total angular

!-Q 0 momenta of booms is nonzero]

These results are identical to those obtained in the previous chapter.
There are three nonzero distinct frequencies as compared to two nonzero
distinct frequencies in the case of no-translation formulation. However,
the frequency of the modes with translation is very close to the uncoupled
mode frequency. A general oscillation composing of various modes there-
fore exhibits beats phenomenon, because:

:' i nr r rt.,
0

n r r a= oM ro5{-13)

which gives a Ueat period -%T of the ordler of over one thousanod seconds
for 1975. This phenomenon would be absent in a formulation without trans-
lation.
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CHAPTER6

OUT-OF-PLANE OISCILLATIONS (OPO)

4ý3 'I4

"Figtre 4. Boomn Movements Out-of -Spin-Plane

Notation:

0 v centtr of hub
I. Z. 3. 4 ;: xit points of boo'ns

OVO axis of hub arc. 101 and 404.

ar. a ngles- subtended by io with the horitontal plaine

ar a nglas subteod "- by i-tb bowon with the comctipo-ding- hu*) ax

an are defined pusitive it contrclockwtse 'romi equi'Ibriurn.
zs viewed. at 'Ile or

x. and yiare mctasured in a corotating franw. ahout Z-.axis; -i k' thve

Iength of horizontal p-ij~ection of a tip roa.4s tront 0 on

(or VI 2

tt I

x -spatially bgroonicai



6. 1 CorIianates of Tip Masses.

x. • cos (0. + r0 cos0.

y. r. sin (09 + r sin G

. r.Lo (0.o + + ) + r cos (0.+ V)
I L 1 0 0

i -- 3,4

y r. sin (0. + +wt) + r sin (0 ) } 3)

x. rt Cos (0 4,)-(0.44. + t sin (0.4)-. r sinS0
* I

, I I I I I I t
. 5 0 .+ r . os (a + •) Co r s i

sina }ai=¾4 i

X. -f r. sin (0

si to. " 0 r-• i+ Cos + oi,• r +0 Co -

x4 ( ,. + Z)+ r. 10. r # 44 .r r.

sn y Z 0 4 Jr r cs sIn A

$ ~1 )r. cosW 44i r Cos0

4t)

SrCosU



Kinetic Energy K. E. of the system due to OPO
4"•

110 1/ .- z M 32ii:-K.•.- 1/110•t • t~2040 + tia Ž m. (&Z + (•, + X) + -.. .
+ j=)

where I is moment of inertia of hub about 103 axis.
103

1204 is about 204 axis.

Yi is the y-coordinate of i-th tip mass without translation.

Z is translation of hub, (Z and Y. are in the same direction)

Potential Energy P. L. of a tip mass

m w ( (r + rO) r (l-costp)
0 0

r cos all

t.aurangan 1, of tiiv syýýtm due to 0110 is

1 0 1. /4 1 ?-0 01) -mi

4

4.

L N.-i:. - a

*a 11: z a . "j2 IS t.

-- t'- 14 1 -- { -

Z s i



wh e re 03 = 0

04 =E02

s = spring constant

6.2 Out-of-Plane Lagrangian

Including deployment/retraction, mass density of wire, spring constant,'
and t-ranslation, the Lagrangian L for OPO is:

1, = /2 1/1 ; + 1/2 2 62

4 ((+ 2) 2mr r. (3 .2
+ 1/2 E' (m+prid ri + (mr i + P--! 0 + •

i=l1 3 1

+ (m + pr.) (. ro + Z) + 2 r [(m + Pr) .sintp.
i 0 1 0 1 1

2r'

+ (0. + .) (mr. + p I ) Cos qi]1 1 2

22

+ (m + pr.)r. sin (0. + 4ji) + (mr. + p i ) (+. ÷d)os (0.
(t 2

-L.4 )(mr+
"/ (m t p r ilr i sin (e i-2+ di + (mr1i + p r i-2 + i cos

( 9i-2 + 1i)}

M2 4 2 r .3 r .

2 . r + P 3 L 4 r 0 (mr + P-2 (I-cos qj )

4 21/2 s 2; 4. 6-1)

i=!1

where 03 = 81 and l :4 2
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6. 3 Harmonic Approximation

We now simplify the Lagrangian L for the purpose of finding normal
frequencies, modes and coordinates. We assume:

1) r 0; no deployment/retraction

2) r. = r; all booms are of equal length

3) p = 0; no boom wire mass density

4) s 0; no spring constant (s is small compared to centrifugal force)

5) 1 1 because of r. = r
22.,6) i .Oi, and z arc of the order O(E); only terms up to O(Z) are

kept in harmonic approximation. Hence, cos = I - +

Assumptions 3) and 4) are for the sake of simplicity in algebra. If
we are willing to tolerate some slight complexity in algebra, we can
relax the restrictions 3) and 4), even though they are not essential
for the analysis of normal modes.

Thus, the Lagrangian L simplifies to:
L=I/2 . )2 2 4 rri3 )( +4) (mp

•i" L = ~~~~~~~~1/ 1(e 1  +O 2 +i/2 1/ ,(rnr. +p_) 0+ )+(m+r.
422 2 + P ri3(0 r0  +z)+ . r 0  + (m r 2 +

+ ri 2 2 +

r + .) (m r. + + Z E l 3 i
2 0 r 0 .3 i)

Sri (+i + ý02[,+- z(m - - z )' 1(4.

2i=3

3 2

Si 1 -+ 2 2 4 r.
ZT E ][(m r.r +P-1 + (m r, +P -) (oi z

22 4

L (0 +12 M 2 (n eta2i•, PT r] + 7 "- E z

iTr 2Since IT 1 + 2 [(m r + P ) + (m + p r) r0 + 2 (m r + P2 ) r0

is a constant in case of no deployment/ retraction, we further simplify
• the Lagrangian 1, to the following:

L 1/2 0 2 + Z (cont. next page)
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+ +/2 +zP) (2e. + (m +pr) Z
",,:.i=j +

"(mr2, 
r 

.

2
r

+ Z (m r +p--) + +

2 3 +pr 0. +s] 2-
1/2 [ w (m r +r! + r0 rr +(6-2

0P r3  +p 2) s

In matrix notation, the Lagrangian in harmonic approximation is:

•iL = /2 (t %Z 43 •4 1. '2Z•) t'a 0 0 0 b 0 +d T
0 a 0 0 0 b +d
0 0 a 0 b 0 b d 3'
0 0 0 a 0 b -d

b 0 b 0 c 0 0
0 b 0 b 0 c 0

+d +d -d -d 0 0 Z"

""1/2 (ýi p t P3 'P4 1 02 Z) q 0 0 0 0 0 0

020 q 0 0 0 0 0
o o q o 0 0
o 0 0 q 0 0 0 V4
0 0 0 0 0 0 0 Of
0 0 0 0 0 0 0 821
o 0 0 0 0 0 0 Zj

3
2 r

where a =m r+p
3 Z

2 r r
b = m r +P + r0 (m r +P- ) e + r d

c = IT
I1T

2
d m r +O"

rk =M + 4 (m + pr) M + 4m
2 r2 r3 r

q z [Im r+pr-+ r (m r +p-)] +s
0 30 2

The Lag ran•;ian has been written in such a form that the matrices ITT
and [V] are manifested.
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L 1/2 ( .. T] 1 1/ I i 4~..Z V]

where:

iT]= a 0 0 0 b 0 +d
0 a 0 0 0 b +d
0 0 a 0 b 0 -d
0 0 0 a 0 b -d
b 0 b 0 c 0 0
0 b 0 b 0 c 0

+d +d -d -d 0 0 m

q 0 0 0 0 0 0
o q 0 0 0 0 0
0 0 q 0 0 0 0
0 0 0 q 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 6-3

From symmetry considerations, or other methods, the orthogonal
matrix has the form:

[B]= 0 0 0 1 0 -1 -i
0 0 0 0 t 1 -1
0 0 0 1 0 +1 1
0 0 0 0 1 -1 1
0 0 1 _a 0 0 0
0 1 0 0 -a 0 0
1 0 0 0 0 0 P (6-4

corresponding to the seven modes: pure translation, pure hub rotations,
coupled oscillations, saddle mode, and jelly-fish mode, respectively.

The unknown quantities a and 3 can be found by considering conserva-
tions of angular and linear mementa. For the coupled mode (4th or 5th
column of B), the sum of angular momenta of booms and hub is (see
Appendix B)

3
2 r r

I IT0+ 2[m r + p;ý+r0(

so that

Zb

I T

Thus, for 3 1, we find a -
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For the jelly-fish mode (7th column of B), conservation of linear momentum
gives:

4 2
M • [(m r. + 41)s cos .- (m + pr Z]

so that: 2
r

4(m r+ ) LY
M + 4m Z

r
•::4 (m r +P•) 4d

Thus, we find 4 : M( 4m r +2

So now, we have an orthogonal matrix B:

[B]= 0 0 0 i 0 -1 -t
o 0 0 0 1 t -i
0 0 0 1 0 1 1
0 0 0 0 1 -1 1
0 0 i -2b/c 0 0 0
0 1 0 0 -b/c 0 0
1 0 0 0 0 0 4d

(6-5)

where [B] is orthogonal in the unusual sense: [B]T [T] [B] : I

TT bZ4d 2

[B]T [T] [B] =[B] d 0 b a-- 0 -a -a+7-
2

2b 4d 2

d b 0 0 a-- a -a,+--,,
C ]1)

2b 2  4d 2

"-d 0 b a-- 0 a a--f

2b 4d 2

-d b 0 0 a-- -a a--
C

0 0 c 0 0 0 0

0 c 0 0 0 0 0

P( 0 0 0 0 0 0
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= 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 c 0 0 0 0

o Zb2
0 0 0 2(a-- 0 0 0

Cc

0 0 0 0 0 4a 0
2

0 0 0 0 0 0 4(a-.)

which is diagonal but not unity because B has not yet been normalized.

Normalized Orthogonal Matrix [B] is:

[B] 0 0 0 n3  0 -n 4  -n 5

3 4 5
Co 0 0 n 3 n4 n5

.0 0 0 n3 0 n4 n5

0 0 0 0 n -n4 11n5

Zbo0 0 0 n -n 0 0 0

2bo n 0 0 -n 0 0
2c -3

4d
n1  0 0 0 0 0 -n 5

I
where n1 =

i
.IT

t•, 2 -1 iiT

n 3  J '2(a-b2/c)

I
n
4

n5 (a, b, c, d, • are defined on Page 69)

2 4d

This matrix 1B1 satisfies: [B] [T] [B] I
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Now we can define a new set of coordinates . \ related to the original
coordinates ) by the following equation-

9
B] to10

:•Z 146-

where are the normal coordinates6

The kinetic energy in terms of these normal coordinates is:

K. E. :/2 i()T (B)T (T) (B)

But, the unusual orthogonality relation is:

T.[B] T] [B] = I

Hence, the kinetic energy in normal coordinates becomes:

14
K. E. =1/2 F"

i=8 (6-7)

where: [] [B []1

The inverse [B]- is calculated in Appendix G. It is:

I d d d d[B] 'M -n " -- 0 0' • I n n nl

b b 0 0
cn cn n

2 Z 2
Sb 0 _b 0 I

cnz cn 2  n2

2 n

1 0 - 0 0 0 0
Zn3 Zn3

o- -- 0 0 0
2n3 2n3

-_ I_ I ..-1 0 0 0
4n4 4n4 4n 4n4

1 I I 1 0 0 0
4n5 4n5 4n5 4n5

74

i',,.•,••...... .. .. . . . . . . . . . .. . . . ..,-.~--



where a, b, c, d. 771 n, *... n5 are defined on pages 70 and 73.

n 22
P-* 0 ~1~P40 

3 1

b mr(r rn) L I -m rLimr 
Li___cn4n 2P-*0 2 IT P 4 0 4

Li IJ~ MM 4 iLin , Lin 4n 2 FM 44mP 0 P-' 5

Limxi-- f Lirn 1 I + 2 m(r +r)n0 f 2 IT P0 IT 10 0

Therefore, the normal coordinates for out-of-plane oscillations are:

8 )1n1 2 3 n I)
b I

9 cn k 2 '4)+n I2 2

10 cn 2  P1 +4) 3 n 2

~I Zn (I + 43)
3

12 2n 2 ý4
3

B3  4n 1 2 J 2 3  4)
4

ý14 4 
-
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In the Limit p 40, the normal coordinates are:

m r
8~~~ zjf4 3 IT~

mr rZ 0 (~ + 4) + ýI 61 E
~IT

-mr (rr) (4~43+ r11

z ' IT I

Ii 2 1to

12 2 It 4

13 r r Z+ + 3 ý4)

\in r M
14 - j~ M+4m I +ý

6. 4 Potential Energy Orthogonal Transformation

(VI q 0 0 0 0 0 0

0 q 0 0 0 0 0

0 0 q 0 0 0 0

0 0 0 q 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

'%0 0 0 0 0 0 0

where W )j srr +p
0 (mr +pl+r (m r+Pj
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T T
IV [v] IB] J[B] IV] 0 0 n 0 -n n

o 0 0 0n 4  5

o 0 0 0 n n n

3 4 50 0 0 n 3 0 n4  n

o 0 ,0 0 0 0 n n n

Zbbo 0 0 nA- 0 0• Zb
,0 n0 0 0 0 0

T
"[B] 0 0 0 qn 0 -qn -qn5

o 0 0 0 qn 3  qn 4 -qn 5

0 0 0 qn 0 qn 4  qn5

o 0 0 0 qn 3 -qn4 qn 5

o 0 0o 0 0 0
•: q 3 n4 n5

0 0 0 0 0 0 0

0 0 0 0 0 0 09

o 0 0 0 0 0 0

o 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

'- 0 0 0 0q 0 0 0

3

0 0 0 0 o 0 0

0 0 O 1q. 0 0 0

3
0 0 0 0 0 4qn4i 0

0 0 0 0 0 0 4qns
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Thus, in normal coordinates, the potential energy is:

L .. /. - 9 , 8, ... 1 )( )T M (B) t8

14 14

8 14 8 8

S9 
2 L t

2
Aw, 10

14 WZ14

SP. E. I /2•Z Ein normal coordinates.
i i

* the Lagrangian L in normal coordinates 9. is in the form:
L

14 W2J z2• ~L = tl
L=/i=8 L i 1 (6-9)

where

the normal frequencies w ire given as follows:

W W 0 (Constant translation, and constant rot.ations]

OUC /a: " ....i:Coupled ' 1i • -0

Modes C a

Unco~upleId

Mode t4 4 - '"
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Limit p-0

Lim a= mr
P- 0

Lim b = m r (r + r )
P - 0

Lim I I1 + Zm (r +r
IT t0 0

Lim d mr
p --

Pa
Lim q = mr (r r 0 +
P-0-

For s small compared to mr (r + ro) mr (r ro).

Thus, the out-of-plane natural frequencies in this limit and harmonic
approximation are:

8 9 t0

r + r
t1 t 2! Coupled Modot

S=r 1 tUncoupled Sadle Mode
1 0

!r rjI

-Jelly--ish Mode
14 0 r 0 NA
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CHAPTER 7

UNEQUAL LENGTH BOOMS

7. 1 Boom Pairs of Unequal Length, Normal Modes without
Translation

New oscillation frequencies and modes emerge if the boom pairs be-

come unequal in length, after deployment/retraction. For large ratio

-f hub to tip masses, good approximation can be achieved for a formu-
letion without tr "ation. As discussed in earlier chapters, there
are usually two approaches to solve an oscillational dynamics problem
analytically: (1) evaluate the secular determinant to find eigenvalues
and eigenvectors; (2) write down the mode matrices from symmetry
considerations and perform orthonormal transformations.

Because of the asymmetry of the system for this case, it is reasonable
to follow approach (1) first, i.e., to find the natural modes. The
second approach wiil be attempted later with translation included.

In harmonic approximation, with no damping, the total Lagrangian L
of the system without translation is:

4
L=L + L.

0 .

where

L0 I /Z 1 0
3 3r. r.

Ll t /2 (mr. t + P+-3 + 6Z -[(mr'2 ÷ 3- )L +

2 3
r. r.

1 2
+(cos.mr. + p- +

222 r

+ (m +pr ) r + Z(mr. + r cos (7-1)

where r, r 3 = r, and r. = r 4 = r' (let r' > r). Thus, ignoring damping

terms, the Lagrangia,' L in terms of the five generalized coordinates
. 43, 4)9 4 8', where e' = 6(t) - 0(0), can be written as:

L = 6/Z ( .. "') (T) L2- / ( 4 .. 0') (V) (7-2)
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V where

FB a 0 0 0 b IV) p 0 0 0 0' (7-3)
0 ,0 0 b' fo fr 0 0 O

0o 0 a 0 b (0 0 p 0 of
to 0 0 a' b9 Jo o 0 p' 0j

V b b' b 19 c 10 0 0 0 01

a 3 a - 1
where a: =ar P3 a' mr' +P-

I z 3

p 3 03 0

4 3

+ 2 (nr~ + pj r]

p~n r + Pi-r P1 p (zr'tP-)r W

Lbet r' > r. so that a'½>a. bb, >'zb. pjjp

Th(- Laj;raagian L. leads. to the to11owing five equations of motion:

j -j where -veaOlsW

Fo½r YA4sckiliatcktvy rnotitsn near the 4-qmilibrium. thc igeduttonb, 4=0z~lt()

r~x~ri- tat) cant be tic~d. Wzadiag to the, fllowing. Oinndt"Incuous cquatio-.~a

Ncot-triviad solulioos cx%2st if the- vankshlinc condi~tilpi of tile~a

Q 2P



which can be evaluated by using Laplace's expansion. The result

is a fifth order equation in W 2

2 2 2 Z 2
w (a w p) (a' - p') [ c (a - p) (a' -PA)-

2b2W (a' W . p,) - 2b, 2 w.. (a W p)] 0 (7-5)

Thus, the eigenfrequencies are:

w =0

W 2 =p/ Ta

and w are not quite as simple as the others, but they satisfy a
4 5.2

quadratic equation in W.:

S-I 2  + (7-6)
2 2 12

2 W a - p a' -p

with the solutions:

w4 -B ± [ B 2 - 4App'c] 1*2 J
:- B B -- (7-7)

"5 ~ZA •

2 2

where A = c aa' - 2 (b2 a' + b'2 a)

B = Z(b2 p + b' p) - c (pa' + p'a)

In the lim.. p-0, the eigenfrequencies are:

0

2 = -r W
2 r 0

S= r 0  W

r7 0
3 rT

Lir w =
r'- r U0

l~irri r0 L1 "r'-•,r t5• rj l° t
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The modes corresponding to each eigenfrequencv . are determined by
the equations of motion:

2 2
(a -w 1) 1 +bw 0 =0

2 2
(a I 1p')4 + b'I w )= 0

2

2 Z(a " P) + b 81= 0 (7-7)
3

2 1) +bwZ 9 0(a't .p,)4 +b'W 0'=0
4

+ ý3) + b 042 +$4) + ce 0

Mode 1: = = 0, = = 0 (i 1, .4) which implies no oscillation.

Mode 2: w = = =p/a 0 -= +4 = 0, 0' = 0

Mode 3: 1 p3/al , l= 30, 4=-4' 8'=0

These two modes (2 and 3) are uncoupled modes because hub rotation
is unaffected. Their frequencies are not new, and for finite hub mass,
there is translation involved.

Modes 4 and 5: These two are coupled modes. Equation (7-7) gives:

2

V b W 61 (7-8)

1 32

2 4 atw 2 p

•~a'w -p1'

where w satisfies equation (7-6) for these modes. Therefore,

2 2

3_ b_ ba' 3-=- - - (7-9)

44 b' a z2 (70)

There are two roots of equation (7-6). Without working out the details
of the explicit solution, we can analyze their behavior by plotting to-
gether the L. H. S. and the R. H. S. of the equation.

83



fC

L. II. 5. 22

R..S =b /a b' /at(-0
2 z2 + 2 2 71

z 3

I I

I I

I ,I. . .

W3 2w

•:Figure 5. Locations of Modes 4 and 5 Frequencies
,%.i! L. H. S. curve is denoted by :

•. From, Figure 5, one observes that the higher coupled frequency
S~4 is higher than both uncoupled frequencies w• and w3 while the

: l~~ower coupled frequency wo is intermediate between wo and w•3

S~~For mode 4, wJ>w c>W•3 so that equations (7-8) and (7-9) give the

ii ~ ~mode pattern: (,•, ,',-0'), i. e. , all booms move in the same

direction with the same frequency in phase pairwise, while the hub

•:moves in opposite direction.

For mode 5, w2> w 5> w3; equations (7-8) and (7-9) give the mode

• ~~~pattern: (0 1, b •b•O), i. e. , booms adjacent to each other are
Scompletely out of phase, and therefore oscillate with the sawe frequenCy

despite unequal lengths, while the hub is in phase with the short pair of'
•! boom s.
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For summary, we display the schematic diagrams of the modes below.

i!it

a'.

Figure 6. Mode Shapes for Unequal Length Boom Pairs
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7.2 Four Booms All of Different Lengths

The normal modes of a heavy rotating hub with all four booms of dif-
ferent lengths can be found easily by using the secular determinant
method, in the "no translation" approximation, the error introduced
by neglecting translation is of the order of:

4 4
M. /(M 0 + m

in.

as discussed in Chapter 4. For satellite 1975, this ratio is less than S1. 6%.

The method given in Section 7. 1 yields a secular determinant condi-
tion for the case of all different boom lengths:

2 2
det a - p 0 0 0 b1 0 (7-11)

I W pt
22

0 a 2 W -P 2  0 b
S2 032

oi 0 a 3 w2 -" 03
2 2

0 0 0

2 2 2 2 2bI &o b2 b3• b 9 cw
3 3 4

2 r.

where a. =mr, + P-
i 3

3 22 r. r.

• ~~b. =mr. + - + r 0 (mr. + p---

3

r4 r3

i 2
2 i2

r.e+ 2 (r. + - ) r

i 0

2r

b P: mr. +P + r m

0 2

pC 1rr + 0-) 1 m P- (

i 20

[Let rI< r2 < r 3 < r4 so that the uncoupled frequencies w. satisfy:

}' W > W2 > W° > w
1 2 3 4
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where:

which is the uncoupled frequency. ]

The 5x5 secular determinant can be evaluated without difficulty using
Laplace's expansion. The result can be further simplifited by dividing
throughout by: 4

W I1 (a 0 - p.) , to the form:
i=I i -

4 b/a.

2 = 2 2

Instead of seeking explicit solutions for this 4th order polynomial
equation inw2, it is most illuminating to plot the L. H. S. and R. H. S.
of the equation against wz, in order to understand the properties of
the roots.

Figure 7. Frequency Location of Modes 2, 3, 4 and 5 for a heavy
hub with four booms of different lengths. L. H. S. of
Equ. (7- 12) is denoted by * curve. [The trivial root
w= 0 of Equ. (7-11) is not shown.]
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It should be pointed out that all four modes are coupled modes, with
slight translation due to unbalanced boom lengths. All U2 are higher
than uncoupled w., respectively. In case the hub become's infinitely
heavy Lirm -. 2 Wi assymptotically.

The mode shapes can be found by using Equ. (7-7) for each Q2.. The
schematic diagrams of the normal modes of a heavy hub with 'four booms
of different lengths are displayed below:

W. 1=at 0 W= 02 W a3 0 4 W= Q 5

Figure 8. Mode Shapes of a heavy hub with booms all of different lengths.

"Note that for oscillations in a pure mode, all booms and hub oscillate with
"the same frequency, not withstanding the unequal lengths of the booms.

:.;



7.3 Unequal Boom Pair Lengths, with Translation.

In matrix notatation, the Lagrangian in harmonic approximation as
given in Chapter 5 is generalized for the case of unequal boom lengths to:

L = -L - 0 0 e X' Y) a 0 0 0 b -d e2- 1($ 2 3 4 i

ai 0 0 b I i

0 0 a 0 b d -e 43

0 0 0 a1  bI e1  di

b bi b bi c 0 0

-d -e1  d e 0 0 X

e -d 1 -e d1 0 0 Y

Y11)' 0 -q 0 0 0 0
2 (i 42 *3 04 0 Xo

o 0 -q 0 0 0

-q 0 p 0 0 0 0 3

0 -q 0 -i 0 0 0

•, e/

0 0 0 0 0 0 0
0.: 0 0 0 0 0 0 |x•

,.0 0 0 0 0 0 0 Y/

where a = mr 2 +pr 3 /3

b = (mr 2 ipr 3 /3) + ro (mr + pr 2 /2)

c T (€i = 0)

d (mr +pr 2 /2) silw t q = 2 (mr + 4r2/2) /

"e (mr + pr /2)cos t
0 op= p+q

AP, M+4m
" P2 2

p (mr + pr/2) r W2

and the subsicript I stands for functions of ri in place of r (r / ri).
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From symmetry considerations, with guiding light shed from the preceding
sections, the orthogonal matrix [ B ] can be written down:

[B ] 0 0 0 0 4- •o

0 0 0 o 0 1 1

0 0 0 0 1 RL 14

0 0 0 -i 0 . i (7-13)

1 000 0 +. v_

0 1 0 f, -g 0 0

0 0 1 g, f 0 o

corresponding to the seven modes: pure rotation with no boom oscillation,
pure translations with no boom oscillation, uncoupled modes with trans-
lations, and coupled modes without translation.

The unknown matrix elements (f, g, etc.) can be determined by considering
conservation of linear and angular momenta. For the first translation mode
(4th column of B), linear momentum conservation gives:

4
Jf =-Z (mr. +pri 2 /2) sin(0 + $i +6)

t:i=i

4
g - i2 (m ri + pr /2) cos (0 + +i +5i) .i

with b= 3 = 0 and -4 = i. Thus, we find

f e/ , f1 2 e

g 2d/7 gi diP

where d (mr + o---) si

e =(mr + P--) cosw•ot

d= d(r rj)
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A,

For the coupled modes (last two columns of B), the sum of angular momenta
of booms and hub is:

•, 'b( + +÷ )bi( 2 4)+$ )cW 0 .

so that
2 (bp + b) +cv 0 (7- 14)

where 4 is the ratio of amplitudes for booms (1, 3) 1o booms (2, 4). The
unknowns p, v are also linked by the first four equation of Equ. (7-7), via
S•2.

=" •2 =. (7-15) !

a, +b v ap ++bv

Equations (7-14) and (7-15) together yield quadratic equations in 1 and

2 h + /cap-a Pl pi
b2  b i fl 0 (7-16)

I~ 2 bbip p

2z +(bi + bpl, Zb + (ajp _Pa 2 alp- pa (7-i7)

It follows from Equ. (7-16) that, in particular, the product of roots of jL is:

-Pi

P

Substituting this result into Equ. (7-15) yields:

+ (ai.+bv) - (at + b V) (7-191

J•Explicit solutions of , and v (Equ. 7-16, 17) are given by:

Fn
(7-20)

1 *-By" IB - 8(atp -pia)/pc
L v
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where B (bi bpi + - ap ap

bj bp+TI Zb (ap pa'

In the limaL r1 - r, we have aj -- a, etc, so that , for equal boom
lengths,

Lim ;1 1n
r- r

Lim
r-4b/c

But limiting values of the mode variables for equal boom lengt], case are
(Chapter 3 and 4)

( i i - , t' , 0, 0, 0)

and ( i, i, 1, 1. -4b/c, 0, 0)

Thus, the correct combinations of p and v for unequal boom length cases

are identified;

4•J t o Li , -_ i t V+ , O P 0 )

and (. V+, 0, 0+ ,v ,O )

where Iq and v. are given in IEqu. (7-20)
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7.4 Diagonalization of T-matrix

The orth-gczal matrix [ B] should satisfy the unusual orthogonality
relation:

[B] T BI 7-21)

If [ B) is noL normalized, then the unity matrix I is replaced by a diagonal

matrix.

[B 1[ TI[1B3 (B]T a 0 0 0 b -d ei 0 0 0 0 -1 p

0 aj 0 0 b, -e d 0 0 0 1 0 i

0 0 a 0 b a -e 0 0 0 0 1 P_ p,

0 0 0 a, b, e, d, 0 0 0 -1 0 1 1

b bi b b c 0 01 1 0 0 0 0 . ,

A -ek d e; 0o 4 0 o j 0

e -d.-e dl 0 0 0 0 t 1 f 0 0i.d

b I b .4 e 0 -(a-dg-cf) au.+bv. apd+b V.

bi -4-,j Aý (a,-c4 -dt 1 ) 0 aI+bI + a.-b ,

b d -e 0 (a-dg-ei) ap_+bx- ap,+bJ

b1  V1  d1 (-a+of; d4A ) 0 a +b1 k'+ at+b I V,

C 0 0 0 0 0 0

0 2 0 0 0 0 0

o 0 /l( 0 0 0 0

C3



C 0 0 0 0 0

o0 0 0 0 00

0 0 0 0 0 0

O- 0 0 2(a1 -eI f! -digi) 0 0 0

0 0 0 0 2(a-ef-dg) 0 0

o 0 0 0 0 2(a +b$Ivýaj++) 0

o 0 0 0 0 0 Z~a~.�+.a+ ,

which is diagonal but not unity because [ B ] ,as not yet been nornalizid.
rhe normalized orthogonal matrix B ] is:

B 0 0 0 0 1-7 p. • -

0 0 0 '14  0 ,1 r

0 0 0 0 ~~Z

o o 0 - 1 0 M i

Io 0 -0 0

0 0. fj4-ný 0o 0

S I 2+ - egi -d |

I) 2t!e{• • . b,. ) 4 I , ) 'p/

where he Sy rbols a,. e01 etc. are defind on' paje 90.
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It is readily verified that this orthonormal matrix satisfies Equ. (7-19).

Now we can define a new set of coordinates { related to the original
coordinates '.... Y' by the following equation:

LJ = B]L J (7-23)

where •i are the normal coordinates. The kinetic energy T in terms

of these normal coordinates is:

K. E.T ]T T

i7
K.E. z ji . (7-24)

The inverse [ B]- is calculated in Appendix H. It is

[ B ]- _ (v+-v) An (pRv.-vi+4/ý.n1 (v+-v•/njn (p•v--V/(n n,'l 0 0 1
-g/an 2  -fh/2n2  g/Zn2 f,/n2 0 n2 0

f/2n3 -g9/2n3 :-f/2n3  gi/2n3 0 0 n3-

0 i/2n4  0 -1/2n4  0 0 0

-i/2n5 0 i/2n5 0 0 0 0

-/ ýn 6 p+/ ýn6 -l/t%6 l+/ ýn6 0 0 0

/n •/n7 i/ýn -p/;n7 0 0 0

where 2 Z( p -
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7. 5 - Orthogonal Transformation of V-Matrix

The orthogonal'transformation of the potential energy V-matrix by
the same B matrix determined in the preceding section gives:

? [BIT[vr][BI =

(1:]T f 0 -ct 0 0 0 o ] fo 0 0 o - n p _n 6  i•+ n7

0:: 0 -ql 0 0 0 fO o 0 0 04 o 1

• -q 0 - 0JO00 0 0 0f n5 ;•t n6 Fin

S0-q0 q 00 0 0 0 0 0-n4 0 1i i000 0 00 In1 0 0 0 i 1~ n

09 0 0 000 0 n2 0 f1 n4 -gn 5 0 0

-q 0 0 0 0 0 0 0 n3  gn 4  fn5  0fo 0 q,0 1  0 of 0 0 0 0 PIO' P) n4 0 1 1

00 0 0 0 0 0 0 0 0 0 pv+% pr.n7
00 '10 00 0 On 0 0 0 f0n-gn5  0 n6

AA

i½=~~~~ 4' c1 p+q

•0 0 0 0 0 0 0 . 0 0 0- n n4 n5 0n 0 n7

3

0 0 04 0 -n40 0 0in 0i4 0 -0 n4 0a PI~n6 pin7

0 0 0 0 0 n 0 0 0 0 n0 p

•~~~~~P 4 6 ni n7_ .60

0:_-•, 0+71g• 1•n 0 0 0 0 n 0 0 0 0-p

•:~ P['- Pl+ f= l+ q

•.A



- t - -7

0 0 0 0 0 0 0

AZA

0 0 0 0 Zpn 5 2  0 0

2
o 0 0 0 0 Z(pý±L +pi)% Zp.+ 1 nn

.0 0 0 0 0 Zp±+pj)%n 2 ZpI++inJ
Thie matrix elements (6. 7) arnd (7?.6) are zero because of Equ. (7-18).
Matrix element (6. 6) can be written as:-

- - or
_(a~t+ bv+) + a, + b~v+ a, + bAiv au + bv'_

4,by virtue of Equ. (7-1 5). Similarly, matrix element (7. 7) can be written
as:-

E- - o r
+ +b aýj. +b v

where v-L and p±~ are solutions of the quadratic equation (7-17), and are
given in Equ.' (7-20).

In normal coordinates, the potential energy is:

P. E. 7.2
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As a result of the orthogonal transformation, the Lagrangian L become
formally simple and elegant:

j 7 .222

2 1~

where W, 0

W2 0

3 =0

'04 = 2 Ft n4

5 i(:ef dg) /a

Pj pp
7+bv or Ib+

where a, b, p.etc. have been defined in Secion 7. 3, and v± are given

in equ. (7-20). Their limiting values for vanishing wire mass are as

f ollows:

2 2
Lim a mr, Lim a mr

Limb =mr(r+r 0 ), Lim b mrnr(ri ro)
Pp___ 0

2 2Lim p =mrroc~ Lim pi mr r 0w0
P-..0 p.a 0

Luid- isnct, Luimd 1 0r ~c~P-b.0 p--O

Lim- e =mr cos Ci.)t, Lim e mr1 cos wot

p -0- P-~0
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Lirm f Z( m/•) r cos w t, Lim Z(m/) r, cos wot
o 0•i,:p 0

Lirm g = 2(m/) r sin• t, Lim gi 2(m/tý r, sinwt
P0 ~•Jp- 0.-----O o

Lir v. - Lim B± Lim Bv 8mr (r -r)/IT

2 /I2

•:!-P'-- '•Op -. 0 p p _. 0

Snm ri (rj + r. + r(r +r) ri - r
Lirn Bv - +

S1T r + r ri + r

Thus, the limiting frequencies are:

Lirn w = = 0S2 •3

Li'x/z( 2 mr r.o-) +CW• r/ r+ r

ro 2m ro r + ro
'V-'00 r

Lir. + = r

P--• 0

• p---.O. 0 r

~.-. 0r 10o
r I r
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CHAPTER 8

ENGINEERING ASPECTS

For computational analysis of the satellite dynamics, the usual inertia,
damping, and stiffness coefficients of the interacting components must be
known. The figures selected here have been obtained from the principal
investigators and from Boeing Wire Boom Feasibility and Mass Properties
reports. [i ,z ]

8.1 General Physical Parameters

The satellite hub weight is four-hundred ninety (490) pounds. The moment
of inertia about the spin axis is one-hundred fifteen (i15) slug ft 2 . For out-
of-plane oscillations, transverse moments of inertia about the boom
axes (i. e. about hub diagonals) are taken to be eighty (80) slug ft2 .

Each tip mass is a three (3) inch diameter sphere with a weight of two (2)
pounds.

The wire connecting each tip mass to the center body is RAYCHEM
TRIAX Cable EPD-1763, Kynar insulated. The wire diameter is 0. 2
cm. and weight is 0. 00635 lbs/ft.

The wire booms are effectively anchored at points which are 2. 67 ft.
from the hub center or spin-axis. This is the hub radius ro in the
analysis. Wire boom movements are assumed to occur through bending
of the wire at these anchor points.

8. 2 Stiffness and Damping Parameters

IFour (4) physical parameters are required to define the coupling and
interaction of the wire boonms with the satellite hub. These are:

"i) Wire stiffness or angular spring constant S

2) Internal wire damping due to inelastic bending of the
wire K

3) Atmospheric drag damping

4) A special Coulomb damper designed to increase wire booni

energy dissipation through ahe hub

In order to determine these parameters, except for atmospheric crag,
sperial experiments were conducted by the principal investigators and
Sdisseminated to the writers for the purpose of this study.
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A I -

A summary if the essential results and a derivation of the coefficients

is given belcw. Determination of these coefficients is rendered ektremely

difficult due to the presence of gravitational forces and la.rge atmospheric
'•4 drag, factors that will not be-present in flight. These large effects are

discounted by studying the result of appropriate -changes iii the experiment
conditions.

8.2. 1 Wire Stiffness S

A spring scale reading of 6 gm at

a 9,5 cm distance from the sus-
pension point gives a deflection of

!\9.5-cm 8 degrees in the wire

Sx 8/57 = 6 x980 x9.5

Y :,S -4x 0" gm. cm 2 ! sec2

: 6 gm

8.2. 2 Two types of pendulum damping experiments were conducted.

One was with short wire lengths where air drag could be neeglected. The
other was with wire lengths comparable to those in the actual case.
Here air damping is predominant, and the Coulomb friction damper was
also experimented with. In all cases a tip mass of 220 gms. was used
to approximate the force of a 2 lb tip mass under actual operating
conmitions ( 30 - 50 ft. wire length, 3 - 4 RPM centrifugal force field).

The usual second order differential equation gives the relationship
between the desired param,-ters and tVe observations:

II +QL)r+ K4+..4=

in the form 4 + 23 + 0.... 0, we have the damping time constant

[ given by z /(mrZ + pr 3 / 3)

If an experiment is conducted for T secs during which n complete oscillations
occur, with initial aanplitude 4o and final amplitude n wc further have

ý o e OR, p='n
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a) Test 1: L~ 50.135 cm

'I Time (sec) Swing Ký 1 gn 2/,ec

0 to0.b9 0 -

L42.7 *.-6.08 30 .0131 14, 250

I*52.75. 5.32 37 .0134 -14, 300

220._ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TestZ2: L 26. 535 cm

No~ofK
~Time(e) 01 m rIe

(sec)Swings See- gnc 2/se

0 16.13 0-

30.0 6.38 30 .031 9,600

49.0 3. 185 49 .0331 10, 200

*The higher damping figure in Test I may be attributed to the air damping
with the longer wire length. However, this effect must be fairly small
Si -ice the calculated K does not decrease as the amplitudes diminish.

The wire damping due to angular bending about the suspension point is es-
timatod at Ký 10 000 gnm cinZ/sec.
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b) This experiment at~tem~pted to differentiate between the effects of the
special Coulomb friction damper, the internal wire damping with the
normal suspension,. and the ever-present air damping, by running
a special test with a',knife *edge suspension and no damper.

In all cases the pendulum period was 6 secs. corresponding to a.
pendulumn length of 892 cm or 352. 35".0

n- 2 +-- r i. 82X 108 gm cm 2
3

Test i Test 2 Test 3
Normal suspen- Normal Suspen- Knife edge

sian inc. da~raper 8innodape, No damper
and wire damping but wire damping No wire damping

K4
Amplitude 4 .5 '"44
at swing #8

Amplitude j811 
9 1at swing #31 ~ ~ ' ~ ~ ~

'00 -
in--sec7 0.00695 0.0059 0.0064

Damping kD+k +kA=2. 52 x k+A=-i51
gmcm/sD 0+A 2  k~10 kA 2.32xi06

where k4is the wire damping, kD ithCoulomb damping, and kA is
the effective air damping.

Comparison of Test 2 with Test 3 results in a negative k 0 which is impossible.
It is concluded that k4 is so much less than the air dam-ping kA that tests Z
and 3 are equivalent. The previous experiment gave k =1. 0 x 104 gil cm-f2 /sec
which c-infirms the conclusion.

Test I then gives k1D in the range 2. 0 x t0- to 3, 7 X 10~ gil cm-L2 /sec.
This result and therefore all of this second experiment is useful only as
a reasonableness check. The Coulomb damper is an order of magnitude
less than the sea level atmospheric danipiiig. F-uriher, whilc Lhe iniLicil
swings were in excess of So angular deflection, the amplitude at swing
nurnbe. 31 (about 301 shows that the damper is barely active. A more
exact representation of Ol-e Couilomnb daniper is -provided in part (4) below.
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8.2.3 It is readily established that atmospheric drag should be a
< •negligible factor in the dynamics of the t975 satellite. A conservative

calculation is carried out below to compare atmospheric drag torque on a
wire boom with the wire dan-iping torque.

S3" diameter sphere at tip, booms of 50' length and 0. 2 cm wire diameter.
Assume 200 km satellite altitude, winter season, 17000 K exospheric tern-
perature. Also assume that the booms are oscillating with an amplitude
of 0. 2 radians at a frequency of 0. 03 cps.

Sphere cross-section = 45. 5 cmz

Wire cross-section = 305 cmz

Maximum velocity at tip mass:

0= 0'x Z" x 2. 54x 0.Z x.03 x 2Tr

= 57. 5 cm/sec

Atmospheric density p 4 x iO 1 3 gm/cm3

Drag force = CD PA
2

For drag coefficient CD = 2, and lumping the cross-sectional
area, Maximum drag force

2 x4 x0 1 3 x350 x
2x (57. 5)

= 4. 6 x 10- gm cm/sec2

Maximum drag torque
4. 6 x 0-7 0 x 50x U x 2.54 7 x 10-4 g z cm 2lsec'

Comparing with wire damping torque-

Maximuni angular velocity

0. 2 x .03 x 2 0 0. 0375 rad/sec

Maximum torque due to wire damping alone

4
k 10 x 0. 0375i 375 gil cm / see

Therefore atmospheric drag torque is extremely small. even when
compared with othier low forces.
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8. 2. 4 The Coulomb friction damper

The Coulomb slider has been tested
and requires a force equal to 4 gms

E to overcome friction and maintain
\ a sliding motion. The maximum

Lfn

end to end movement of the wire
at the slider, and thus also the

slider is t. 23 cm. The distance

coulomb D between the point of suspension

\ slider and the slider is 9.5 cm.

1.23 '
cm

\T

m

Since the wire boom length is in general so much greater than the distance
D, the angle 0 between the wire and the normal may be taken to be the
same at the suspension or at the slider. For a tension T in the wire, the
lateral force on the slider is given by T sin 4. As an example, a 2 lb tip
mass on a 50' wire spinning at 3 RPM will overcome the coulomb friction
when the wire deflection exceeds j. 70.

Oc = sin-(4x 980) - . 77

If the coulomb slider comes to rest for some wire deflection 41 , it would
move again only when the angle 4 >*i + 4 c or <41 - #c provided of

course that the limit stops permit. Note that when the slider reaches the
lmt.615),tedmebeo s

limit stop for 4 >3.7 + +c (i.e. tan-' 65) + c ) the damper becomes

inactive. The non-linear characteristics described are implemented in the
program.
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A reasonableness check for the value of kD obtained in part (2b) above with the
characteristics given here can be made using energy dissipation consider-
ations:

The pendulum experiment in 2 had a 6 sec. period and an average amplitude
of 3 feet or 0. 1 radian. Energy dissipated per cycle

= fkDl d

Let,+ = .i sint. Thend+ = oicost dt

.'. Energy dissipated per cycle

= f 3x i05x.0i cos2tdt = i04 gmcm /sec

Energy loss in the Coulomb damper per cycle

= force x distance

= 4 gmx 980 cm/sec2 x L.23 cmrx 2

= 10 g4m cm2/ .ýec2

This confirms that the characteristics determinec: above should provide
a consistent set of parameters for the calculation of the S3-2 satellite
wire boom dynamics.

8.3 Ertimate of Performance -- Damping of Large Disturbances

For moderate deflections of the wire booms, the behavior of the satellite
will depend upon the oscillation modes that are excited. Based on whether
there is translation of the center body different frequencies will be evi-
denced. The damping is amplitude and frequency dependent; when the am-
plitude drops below 4c i. e. the value required to cause sliding friction,
the oscillations will diminish very slowly.

When the initial amplitude for each boom is large enough to ensure maximum
damper action ( >5.40 in the exar.ple in part 4 above), an estimate may be
made for the rate of decay of the oscillations, Assume 50 foot boom de-
ployments, 0.2 rad initial amplitudes, and an oscillation frequency of 0.03 cps.
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Maximum angular velocity of each boom"

- 0.2 0. 03 x 2 T- 0.0375 rad/sec

Snergy in each boom

1 7 3 2
- -(in + pr /3 ) 4

2 ( 910 x ±560 + 0.0945x 1560 3 /3) 0.0375) 1

- 1.65 x 106 gm cn 2 sec2

Energy diseipatiart ýŽe.' cycle in the dan- er4 2 .

10 gin cm /sec

Therefore the damping rate it initially adequate to dissipate all the energy
in 165 cycles or 165/0.03 5500 secs.
"Thus the damping time constant fot large disturbances is approximately one
earth orb-t.
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CHAPTER 9
•,4

DISCUSSION OF RESULTS

To recapitulate the results, the main features of wire boom-satellite
i'• dynamics are listed in this chapter. In view of their general nature,

they should be useful for a wide class of satellite experiments featuring
deployable /retractable wire booms.

9. 1 Main Features of Analytical Results

i) Satellite hub spin slows down as booms are being de-

ployed and speeds up as booms are being retracted.

2) Hub spin is steady when the booms are oscillating com-
pletely out-of-phase with each other (in an uncoupled mode).

C 3) Hub spin rate oscillates with a frequency identical to
that of booms oscillating in phase with each other ( in a
coupled mode).

These first three points are due to conservation of angular momentum.

4) The system is less stable during boom retraction.
This can be understood by looking at Equ. (2-5) or .(2-6), in
which a negative -reduces or even reverses the sign
of the damping term t . Thus wide deflections of booms
occur when

r + k/Zmr < 0 (uncoupled case)

or • + kIT /Zrnrlo< 0 (coupled case)

. 5) Damping is prominent when booms are short. The

damping term P (in Equ. 2-5 or 2-6) is proportional
to r . This effect is not due to atmospheric drag or
Coulomb damper, but due to the property of the wire
used for the booms.

_. "-6) The term responsible for forced oscillation due to
deployment/retraction is prominent when booms are short,
since the forcing term F(t) in Equ. (2-5) or (2-6) is pro-
portional to the ratio ý/r.
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7) The amplitude of boomn oscillation after deployment/re-
traction period T depends on the ,mplitude and velocity of
boom Ascillation at the moment of stopping deployment/
retraction, because 4 (t > r ) is proportional to T (T)
and [04(T)+4 (T) IinEou. (2-10).

8) The uncoupled mode frequency is the lowest frequency
, ncountered fn any satellite-boom configuration. Presence
of translation implies the existence of an uncoupled mode,
Snd gives somewhat 'lir'her frequencies than if translation
-is igncred. The coup. I mod-. frequency is always higher
than the uncoupled frequency because of the higher level
energy interaction with the hub. The coupled mode with
symmetrical boom lengths is characteristically devoid of
translation. Finally, out-of-plane frequencies are con-
sistently higher thaa in-plane frequencies because the
tip masses operate in a normal rather than in a radial field.

The frequencics of modes in hub spin plane are generally
lower than the spin frequency unless the boom lengths are
shorter than the hub radius. Out-cf-plane modes have
frequencies always higher than the spin. See Figs. ii and 12.

10) Beat phenomenon appear in modes involving translational
oscillation of hub. For 1975 satellite, beat periods are
usually about one to two thousand seconds, which accounts for
the fine splitting of spectral lines by A 4w . 001 c. p. s.

it) If all booms are simultaneously deployed or retracted, the
coupled mode is excited because symmetry allows no way to
distinguish one boom from another so that the booms move
together in a coherent pattern.

12) If some but not all booms are deployed or retracted,
generally both uncoupled and coupled modes emerge. Booms
being deployed kýg behind in phase relative to those un-
deployed or retracted, The uncoupled mode is usually favored
because of its lower frequency and therefore lower energy
level.

13) A remark about translation should perhaps be mentioned.
If there is no external force, the center of mass of an isolated
system initially at rest should not run away. The (X, Y) that
we use are the hub center coordinates. Thus, if initially
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11 - 1. . -'. -ý __ -- 7 7

(t 0) the center of mass and hub center coincide, then final
translational displacement (t >>T) must oscillation around the
center of mass, i.e., the initial hub center (X = 0, Y = 0).
If initially (t = 0) the center of mass doeb not coincide with
the hub center (as in some cases where booms are initially
deflected), then although the translational displacement (at
t >> T) still oscillates around the center of mass, it does not

oscillate about the initial hub center (X= 0, Y = 0).

14) Although oscillations out of the spin plane are expected
to be insignificant due to the presence of an effective wobble
dampair (see Ref. i), it is nevertheless interesting to estimate
the effect of possible out-of-plane boom deflections %. on in-
plane mode frequencies, and vice versa. A nonzero value of
W effectively shortens the inplane boom length ( r.-- r, cos LP
so that the total moment of inertia changes somewiat, and
the potential energies are also affected. Since the potential
energies come essentially from the cosine terms in the La-
grangian (see, e.g. the second page of Chapter 5 and the third
page of Chapter 6), a deflection t out-of-spin-plane contributes
to the inplane potential energy, for,

2 2r Cos bCosi= r. ( -4+ b,+..
1 11 1

for small angular deflections. Thus, inplane mode potential
energy terms are located not only in the inplane vector space re-
presented by V. but also in the out-of-plane vector space Vout*in
The opposite is also true for out-of-plane modes. There-

fore, a rigorous formulation of the inplane *->out -of-plane
"modes should involve 14xi4 matrices T and V. However,
since ki is expected to be small, the results obtained by
considering disjoint inplane and out-of-plane vector spaces
are certainly of satisfactory accuracy.
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9. 2 Remarks on Fourier Spectral Analysis

Figure 9 gives the Fourier transforms of several time series of funda-
mental importance.

SIO s S~t)S(t)

0

469

(b)9(C)

FiueMaoe)Setu of) (ac) (d(idig



In Fig. 9(a), the Fourier transform of an infinite train of sine wave
sin(Wo0t) is just a 6(w-co) function. The fourier transform of a pulse

step function is a (sin w T) / (•oT) diffi-action function [Fig. 9(b)]. Thus,
0

a finite sine wave train of length T [ Fig. 9(c)] gives a diffraction pattern
S- around the &o (power) spectral line with sidelobe maxima located at

±o t (n + 1/2 ) / (n = 1, Z, 3,...)

and sidelobe minima located at

S_+ niT (n 1, 2, 3,....)

The time series length T is also called window width. The wider a win.-
"dow is, the less diffraction appears. If two spectral lines are too near
each other, interference of diffraction patterns may occur.

In this report, most of the time series for spectral analysis have a window
width of 2048 sec. A sine wave sin wot of such length would give spectral
sidelobe maxima at woo 0. 000488 (n + 1/2) c. p. s. and minima at +

0. 000488 n c. p.os. (n = 1, 2, ... ). Also, in this report, most of deployment/
retraction periods considered are ZOO sec. A pulse step function of Z00
sec. period would give spectral sidelobe mazima at 0 ± 0. 005 (n +t/2)
Cc.p.s., minima at 0.005 n c.p.s. (n = ±f, ±2,...), and a main peak at
0 c. p. s. However, if the pulse is not perfectly constant due to boom
length change, a splitting of spectral line occurs, shifting the main peak
slightly away from 0 c.p. s.

In Fig. 10, a situation of peak truncation is shown, where the actual peak
* - happens to be in between two output points, due to finite resolution:

X •= ±i / 2NAT, where N is the number of points to be transformed,

and AT is the sampling rate.

The fast Fourier transform algorithm as developed by Cooley and Tukey [io]
uses 2 N input points. For example, a 2048 sec. time series of sampling
rate AT = i sec. would give 2i' input points for fast Fourier transform,
with a resolution: Aew = ±0.00025 c.p.s.
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9. 3 Computer Sim-ulation Results

The results of a number of digital computer simulation runs for satellit
"system 1975 with various given initial conditions are presented graphically.
These results are the time series of the satellite system variables evaluated
by solving a set of coupLed differential equations [Equ. (3-8) to (3-11)],
[Computer Program SATEDYN].

In the first set of simulation graphics [Fi.i. 14 (a-d)] two modes are
shown: thQ coupled mode and the uncoupled mode without translation.
They are excited by initial boom deflections: (0. 14, 0, 0. 14, 0) radians.
No deployment/retraction of booms is involved, and the boom 1 -ngths are
all equza (50 ft. ). The presence of the coupled mode is indicated by the
oscillating behavior of hub angular velocity (spin rate, i.e., wo(t) (4, +
IV W ) in Fig. 14 (a). The uncoupled mode prevail, eventually because of
its lower frequency (or energy). Since symmetry allows no way to dis-
tinguish boom i from boom 3, and boom 2 from boom 4, only the deflec-
tion of boom i and boom 2 (curve with astaaisks) arc shown [ Fig. 14 tb)].
I*;e predomninant ucoupled mode gives a higher peak in the power spectrum
plots of boom 3 [ Fig. 14(c)] and boon' 4 [ Fig. 14 (d)]. The next higher
harmonics are too weak to show up in the graphics but can be revealed by
means of digital printouts inot shown).

Simulation graphics set ,2 ( see Fig. IS (a-i)] shows the eaupled mode
and un.coupled modes with tranlational oscillations of the hub. "The todes
ire excited by initial boom deflections ( O. 14, 0.07, 0, 0.07) radians.
: Agatino deploymevxt/retractioa of booms is involved, aud the boom
lengthb are all equal (50 ft.). Oscillatory behavior of hub angular velo-
City (Fifg. 1Sa)J persists throug-hout the simulation period. Translational
oscillatioas :4f ther- heavy hub are shown to be small in amplitude (X X

c 1 cm. .ic. Ii (b. 1ihe initial h-ub ce-awer coordinates do not
Cý.ctfidv with the 'enter of rams because of fCe initial unsyntunctrical buoro
de*Ictle~tions, aM therefore the translational oscillations tX, V) eventually

do not center around the initial coordiategs X -0, YVl0) of the- enter of the

hub. heat pheotwtenon cank be Seen in the ostillations of the booms I ad
2 (curve with 4trisksfriz. ISM), , and •ho ste of the booms 3 and 4 (tcurve

with asterisks) [Fig. IS tlo). "Me bcats arc responsiblc for the fetic ,pin-
ting of the •ucouled mode 1frequency, I ig. Is 4-i)). 1)w inverse of ti•e
ix bat pornd is equai to the tliifterei of splutted frnqeetties. Thlo de-
- eneraer of r tht ,Pa of Unco'np.l4 mode higcnfunctins -A heen removed
Sby the slighitly b.aken synmrtry causvd by the appeatance of smnal ampi:-
"tude hub translations.
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Figure 14 (a-d)

Simxulation graphics: Set #i
Satellite boom lengths: 50 ft. (all)
Depl3yrnentf/Retraction: Nil
Initial Boom Deflections: (0. 14, 0, 0. 14, 0)
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Figure 15 (a-i)

Simulation graphics: Set #2
Satellite boom lengths: 50 ft. (all)
Deployment/Retraction: Nil
Initial Boom Deflections: (0. 14, 0. 07, 0, 0. 07)
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The third set of simulation graphics depicts the effect of boom deployment
II Fig. 16 (a-d)]. All boom lengths are 40 ft. initially and 50 ft. finally.
The modes are excited by deployment (period T = 200 sec.) and by initial
boom deflections (-. 09, -. 07, -. 09, -. 07 radians). During the deployment
period, the hub spin slows down due to conservation of angular momentum
[ Fig. 16 (a)]. Oscillation of hub spin rate indicates the presence of coupled
mode. Translational oscillation is not involved because of the symmetry
of the booms. A plot [ Fig. 16(b)] of deflections of booms 1, or 3, and 2,
or 4 (curve with asterisks) shows particularly large deflection amplitudes
during deployment period in which forced oscillation (c. f. Chapter 2) are
present. If the initial boom deflections were identical, simultaneous de-
ployment/retraction for all booms would excite the coupled mode only.
Since the initial boom deflections are not really identical, an uncoupled
mode is present, as revealed by the power spectra of boom i (or 3), and
boom 2 (or 4) in Fig. 16(c) and Fig. 16 (d), respectively. However, the
coupled mode is dominant. There is a small bump (or tail) attaching to
the right hand side of each of the sharp spectral lines. This phenomenon
is due to the higher spin rate (and hence higher mode frequency) before
completion of deployment (and hence slow-down of spin). The bump near
0 hertz is due to the nearly constant force step function during deployment.
Digital print-outs show that the minimum of this bump is at 0. 005 c. p. s
(inverse of 200 sec., the deployment period T

To illustrate the point that the amplitude of boom oscillation after de-
ployment/retraction depends on when the deployment/retraction stops
(see point #7 on pg. 109), a plot is presented [ Fig. 17 ] in which de-
ployment stops i0 sec. (i. e. i/20th of T ) earlier than in Fig. 16 (b),
and the booms swing to the other side in large amplitudes, just after
deployment stops.
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Figure i6 (a-d)

Simulation graphics: Set #3
Satellite boom 'Lengths: 40 ft. (all) initially,

I 50. ft. (all) finally

Deployment~period: 200 s ec.
Initial boom deflections: 0-.9, -07, -09, -07) radians
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The next set of simulation graphics (set #4) [ Fig. 18 (a-i)] shows the
combined effects of unsymmetrical boom retractinn, hub translation,
and unequal boom lengths. Initially, all boom lengths are equal (45 ft.),
and finally, their lengths are 35, 45, 45, 45 ft. Retraction period is
200 sec. and the total simulation time is 4100 sec. furnishing 21 data
points at I sec. intervals for fine spectral resolution (A(a = 0. 000122c. p. s)
in the subsequent Fourier analysis. During the retraction period, the
hub spin increases [Fig. 18 (a)] in contrast to the deployment case. Simu.
lations of translational variables (X = X + X , Y = Y + Y ) show that

00
the hub center oscillates about the center of mass of the satellite system,
and no runaway occurs [ Fig. 18(b, c) ]. The amplitude of oscillation of
the retracting boom [ Fig. 18 (d) ] is very large due to forced oscillation
during retraction period (see Section 2.4)]. The non-retracting booms 2
(with asterisks in Fig. 18d), 3 and 4 (with astrtisks, Fig. 18e) move in
opposite directions relative to the retracting boom. Beats are prominant
in boom oscillations [ Fig. 18 (d, e)], resulting in the splitting of spectral
lines [Fig. 18 (f-i)]. The analysis in Chapter 5 (Equ. 5-12) has predicted
a two pronged splitting of the uncoupled mode frequency for pairwise equal
boom cases with translations. However, minor complications in the split-
ting would occur if the boom lengths are unbalanced [ Fig. 18 (f-i) ]. The
coupled mode and higher harmonics frequencies are too weak to show up.
A bump at very low frequency in the power spectrum of the retracted boom
[ Fig. 18 (f) I is due to the 200 sec. constant retraction resulting in an
almost constant force during the retraction period. The minimum of this
bump and, in fact, all four bumps can be identified at 0. 005 c. p. s. ( in-
verse of 200 sec.) and again at 0.01 c. p.s. (which is n/T , where n = 2,
T = 200). Small local maxima and minima can be seen on the bump

(and, in fact, they are everywhere); they are due to the use of finite
length (4096 sec.) of time series. The location of the first local mini-
mum is at 0. 000244 c. p. s. (inverse of 4096 sec. ). The bump of boom 3
is very weak but can be revealed by means of digital printouts [not shown].

Very short boom behavior is simulated in the next figure [ Fig. 191. All
boom lengths are equal to 9. 5 ft. initially, and 1. 5 ft. finally. Retraction
period is 160 sec. Tlhe wavelength of a boom decreases as the boom is
being retracted, and the amplitude rapidly grows to very large value (it
would grow to infinity at zero boom length). Strong damping (not due to
Coulomb damper) is prominent for short length booms (see Section 2. 4).
Since all booms behave identically in this simulation, it is sufficient to
show the behavior of only one boom.
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Figure 18 (a-i)

Simulation graphics: Set #4
Satellite boom lengths: 45 ft. (all)initially,

35, 45, 45, 45 ft. finally
Retraction period: ZOO sec.
Initial boom deflections: Nil
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The fifth set of simulation graphics shows the effect due to the deployment
of a pair of booms (boom i and its opposite boom 3) and the simultaneous
retraction of the other pair of booms ( 2 and 4) [Fig. 22,(a-d) ]. All boom
length are 20 ft initially, and 30, 10, 30, 10 ft. finally. Retraction period
is 200 sec. and the deployment/retraction rates are equal and opposite to
each other (viz., . 05 ft. /sec.). This maneuver of wire booms causes a
net increase in moment of inertia of the system and therefore a slow down
of satellite spin results [ Fig. 22 (a)]. No translation occurs because of
the symmetry of the system throughout the maneuver. Deflections of the
retracting booms are in opposite direction to the deploying booms (as-
terisked curve) [ Fig. 22 (b) ]. Amplitudes of the retracting booms are
larger than those of the deploying ones, since oscillations of retracing
booms are less stable (see Paragraph (4) of Chapter 9). All boom am-
plitudes during deployment/retraction are somewhat large, because the
magnitude of the relative deployment/retraction rate is twice that in a pure
deployment or retraction case. The power spectra of boom oscillations
show the presence of both partially coupled and totally coupled modes [ Fig.
22 (c, d,) ] (compare the harmonic frequency results in Figure 21). The

low frequency contributions in the power spectra are again due to the 200
sec. of forced oscillations caused by deployment/retraction of wire booms.
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Figure 22 (a-d)

Simulation graphics: Set #5
Satellite boom lengths- 20 it. (all) initially,

30, 10, 30, 10 ft. finally
Deployment period: 200 sec.
Initial Boom Deflections: Nil
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The last set of simulation graphics (Set #6) is to demonstrate the harmonic

oscillations out of the spin plane of the system. Such oscillations are ex-

"pected to be insignificant during actual satellite experiment because of the

installation of a wobble damper, which is considered to be very effective

(see Section 3.7, ref. f). Heace, there is no need for elaborate simulations

for out-of-plane oscillations. However, for the purpose of gaining insights,
it is useful to perform a simulation [Computer program SYNHARM] in har-
monic approximation without damping. The method of Fourier synthesis is
most appropriate since all the harmonic variables have been calculated
(Chapter 6). For a given set of harmonic variables, the time evolution
of the variables are simulated_. In Set #6 the initial values ( 1 Z' 'P3'

1P4 , Gj, @ Z) are given as (-. 0008, .04140, .05160, .04164, .01422,

-. 2844, . 01i98) where the angular variables (i'j Oi) are in radians and

the translations in feet. The time series of LP, and 4J2 (asterisked) and
those of 4J3 and 'P4 (asterisked) are displayed in Figure 23a and b res-
pectively. All four nontrivial modes are present. The coupled modes
can be clearly seen in 61 and 62 (asterisked) time series (Figure 23(c]),
where the coupled mode involving booms 2 and 4 is twice in magnitude
compared to that involving the other pair. The Z - motion is due to
the presence of jelly-fish mode, and since it is a pure sinusoidal wave
of small amplitude, its time series is not of much interest and thus
not shown. The spin axis sweeps a conic in space. A cross-section of the
conic in this simulation shows a clover leaf pattern [ Fig. 23 (d) ]. The
conic sweep starts in the third quadrant, moves into the fourth, then second,

third qiadrants, etc. and is found moving in the second quaddant at the end
of a 24 sec. simulation run.
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Figure 23 (a-d)

Simulation graphics: Set #6
Satellite boom lengths: 45 ft. (all)
Deployment period: Nil
Initial Boom Deflections: -. 01008, . 04140, . 05160, . 04164 radians
Initial Hub Inclinations: 0 0142, -. 02844 radians
Initial Z- position: .01098 ft.

165

A0f



o (d

U

cd0

4.-j

ol.~
ol'0

S~166



U -

ho 4

solo4 z"'eo -

t670



y.

*~~C :> ------- _ __

i iO

0

S0*

S0

~4.e4 m

•'- -• 0

........... .......

0.• . 0 (c

.- • 4-4

• .0I ' ':-._•• :• ,i >
i: OlO •OO •00 •0' - •00" "0:'U

S168

h •,, I,•:• :.•_~~~~~~" '0 _.•..- :•:,!,--,, "•• .-'..,



44 )

4)

44 U
2A') 4-

4))

4-))

0o O~4)

ro 4

(d (a m

169



CHAPTER 10

PROGRAM LISTINGS, INPUT FORMATS AND SAMPLE OUTPUT

i0. I Introduction

For full simulation of the satellite dynamics including built in Coulomb
damper actions, large angular deflections leading to possible higher
harmonics, combinations of boom deployment/retractions, and possible
non-linear mode-mode coupling, Lagrangian equations of motion should
be used. They are found to be a set of coupled second order non-linear
differential equations (Chapter 3). The time-dependent solutions of
these coupled differential equations, which embody all the dynamics of
the system, represent the entire history, or simulation, of the behavior
of the various components of the satellite-wire boom system. For a
specific simulation, controlled initial conditions may be imposed.

10. 2 Method of Simulation

Hamming's modified predictor-corrector method [12] is chosen to in-
tegrate the differential equations by virtue of its relative stability and
accuracy. It has the advantage of self-adjusting its step size to accommo-
date a given accuracy requirement, thus preventing unstable error prop-
agation and enabling the revelation of the detailed behavior of the solu-
tion at those interesting parts where there is a great deal of structure.
However, the predictor-currector method, though powerful, is not self-
starting; hence, the Runge-Kutta method is used as a starter to generate
the first four points. With these methods, program SATEDYN (listed in
this chapter) is capable of generating digital simulations of the time-de-
pendent dynamical behavior of the satellite system, depending on the
experimental conditions. Within this program, the coupled second order
nonlinear differential equations are transformed to a set of coupled first
order differential equations. The first derivatives of the seven variables
used are defined as additional variables, resulting in a set of fourteen (14)
coupled first order nonlinear differential equations in fourteen (14) variables.
The details of the input formats are listed in Table 6.

Another method of simulation is used in the program SYNHARM, using
a frequency approach. It lacks the full fledge capability of program
SATEDYN, but has the advantage of simplicity. If the normal frequency
of a system are well known, then for harmonic oscillations near equilib-
riuni, the amplitude of each generalized coordinate can be equated to a
Fourier series in terms of the normal frequencies. A complete set of
such Fourier series equations then forms the harmonic equations of
motion of the system. Time-dependent solutions can then be generated
to match a given complete set of initial conditions. The details of the in-
put formats for program SYNHARM are listed in Table 7.
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Program SATEDYN listing follows.
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Appendix A Gonservaion of X and Y Momenta

The equations yielded by using Lagrangian method are those corresponding

to the motions that nature chooses, according to the philosophy of

Lagrangian Principle of Least Action. The motions so derived should

be consistent with conservation laws of nature. Therefore, the X and

Y -equations of motion should be derivable by considering X and Y

linear momenta conservation. This approach provides some checking

on possible algebraic mistakes in the calculations using the other method.

In- the center of mass system, the linear momentum of the whole system

in X - direction should be zero. The total X - momentum comprises uf

the following

X -momentum of the hub = MX
4

X - momentum of the tip masses = m.(X + W.t) - 0(t) yi(t)
1

X- momentum of the wires =d -r (t) y(t)

Changing to polar coordinates (see page 34, ) we have:

i - (t)yt) t W . cos z - r. sine. ( 0rsiuO,
* 1 1 1 -r0 1

Thus, the X - motnentbim of the entire system is found as:

4zSMX+ Z (m +÷or.)( X + r cos -r 0 sin.)- (mr. 4

(0 +€) sin•. 0 0 (equates to zero) (A-1)

Similarly, the Y -momentmn of Jie entire system is found as:

4 ri
MY + ) ( (m +pr) (V + r. in bil r cosc.O) 4 (mr. i, -ia i i 1 1 2

i.I 3



( + cos 0 (equates to zero) (A-2)

The time derivatives of the linear momenta equations must yield the

"corresponding equations of motion. Thus, differenting the X - momenta

equation, we have the following X -equation of Motion:

4

MX + r +.cos,.-r sin.O) +(m+Pr.)
{r1 1 1 0 1 1 2

"ri
(x - 2.sin.[O+¢.] . r sinO. r cos( 4)+

1 1 1 0 i o i i([+.si€+i o~ ) } = 0( A-3 )

Similarly, the Y -equation of Motion is obtained as follows:

4 .
MY + P r (Y i•sin . + r cos®.) + (m +Pr)

1 1 0 1 1

.2
(Y + Z .cos [Cos -r sinQ. + r cosO. )

1 0 1 0 1

r
(mr. +p )( + sin ~ O'.Cos%. 0 (A-4

21' }
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Appendix B Conservationi of Angular Momentum

///M '1O.

Hub

For simplicity, it is sufficient to study the case of one boom; (for 4
booms, let r - ri and (ý -. i with summation over i 1. . .4). Let
p - 0 for further simplicicy; (integration over r if p 0 0).
Total moment of inertia 1T is the sum of that of the hub plus that of

the boom (s).

-IT + n ( r+ ro z Zrro cos 0 ) ( 1I-tT o

The total angular momenturm about the center of the hub is the sunm
of that of tUhbe hub plus that of the booml(s):

to + m r + r ~+ Zrr' o

S1T ÷ In (r r + ro 2rr coso) 0 T In

where X tan- ( i
(r r cost)

anid t tan

!.ta~
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TW .'7 
7-- *g u7-'g t 7 *v'ur

Sd .1 1
Since jtan (x) = +. wehave:+ x

1r sin+ + r coscP

1+ ,r s.m26• ro + rcos 4

ro + Zr r cosa + r cosZ@
0

r sin' r sin4(p

(ro + r cos ),2 rc ms -

-"(r 0 + r cos [.(r + r cos)(O sin, + r zCs•4•)

r 0  +Z rco tr 2 (r + rcos~)

0
.. ~ r siil4..(r sin¢•-(" cos0

r( sin4 + r co + s qr> ) roq
-- 0

r 2 + Zrro cosQ+ r 0

Hence. the total angular momentum hecomes

6+i X l + m ( r.sin +rcosO4)+ r

It there is no external damping or force, the total angular monentwn of
the entir- system should be a constant of motion. Hence,

t• dT ni : + 0

%i- conservation law shondd yield a p -i.uaton of motion identical to
that obtaned by using Lagrangian n•ethod.

+r 4r 4r~2 rQ2r rcoosq4 i

+ tl to m cro 4 ro) 4 -fro noso) 1T Zrr
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T 0 + m(2ri t 2cir cos4 -- rr sinn )6 +

r ( cos i + r cos 4 -r .Hi n- 2 0 :, Z) r + r2 21i" o
+ T+m v(ra + rr Cos4K) +2(6+4)( ri.+r r cos¢_ re r sine6)T! 0

+r r0 sin44i = 0 (equate to zero)

which is the desired O-equation for one boom.

For 4 booms with p#O, the total angular momentum d the system becomes

4.0

1 " A. +i + Bi ro cos..i + r r, in o = constant 0±
i:,T i=1- 0 ' o s a t o

0j 1 motion

Differentiating the angular monmentumn should qive the t, -equation of motion:
U+i + ,-{ 2t. +D. r cos A.5+A$? 4

Tifl 1 1 1 1 1 i-t

B. r cos -- r sine 0 4 D. r cos *. *. +p r f sin .

4

-irt- 24Bt 2.l re cos *,tprr - 2 Wr sin i

4

= 0 [quat oo-.Si'

2,< A, + 411 r Cos 4.6 0 -. r t p r

U,) r $1 r gil 10 .r r n¶B

,u to "i

-- 1 "' II for rotation r i .

A.. 
43 

etcari -Ipr

217.
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Appendix C To Derive Some Simple Frequencies

U,
Consider a simple situation withi the following assumptions:

i. No wire mass density
2. No boom deployment/retraction
3. *and 40 are small, but 6is not small
4. '4 iare not negligible
5. No translation and no damping
6. Only one boom, all booms in phase, or all out of phase

Such simple case gives:

2. 2 62
O-equ: mr 4+ 0(rmr + mrr )+Onrr sin~ 0

0 0

or: r ~+ 0(r + rr )+6 rr 4,=0 C-0)
0 0

'#: 0- ecu: I6+ ir (r +r ) =0 (C-2)

Note O-ecju. can be derived from Lagrangian L of the total system, or
from angular momentum:

+ m m(rZ + r 2 + 2 r cos 6)(+~)
dt L0 + 0

+1 +m r 2 +r Z+ r r ) ~ + mr (r + r

~•0 (equate to zero because it is constant of motion)

where I is assumed constant because 4)and 4)are negligible so that
T

..........
2 2m I+mr + r + 2 rr)

T o 0

4---
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Uncoupled Frequency

If the hub is un-coupled to the vibration of boorm, then the hub rotates
with constant w ~ ) so that equ. ( C-i )becomes.

r 2  rr -0

or *+~/ ~ 0
ro

Hecete nor pe frqec W = 0  Crr

Coupled Frequency

In the coupled case, 6 is dependent on $.Combining equs (C-i) and C C-Z)
we have:

z + mr r + r 0 ) (r r 2

TZ ) r + 6 ri 0

Fr2 ~ r(r + ro)m (r=0

L ~ + r (+ r)2 ro] *

z 2

LI +m~r+r0 2  r2 
- r(r ro M

I

I r

0 0

IT rI

Hence the coupled frequency IŽ=w T
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Appendix D Characteristic Determinant for Inplane Dynamics

In this appendix, the following symbols are used:

Lot a aE 2 - p

b bw
M•7• 2

d

2
e e w

The right hand sides of the above identifications have the same symbols
used in the chapters, while LHS symbols are specifically for this appendix
only.

a 0 0 0 b -d R R7

do IAI = 0 a 0 0 b -e -d

0 0 a 0 b d -e R d R6

0 0 0 a b e d

b b b b c 0 0

-d -e d e 0 M 0

e -d -e d 0 0 M

a 0 0 0 b -d e a 0 0 0 b -d 0

0 a 0 0 b -e -d d2 +eZ
0 a 0 0 b 0 -

0 0 a 0 b d -e
0 0 a 0 b d 0

o 0 0 a b e c C +eC d2 +e2"7 0 b e dC7 6 0 0 0 a b 0

b b b b c (1 0
S0 e-2 0 + M ed - b b b b c 0 0

000 g+d.C 7 dZe 2  dj+2 .z c2+e2

""deM eZM 0 e 0  e 0 0 a--.Me 0 - 0 0-de

e 0-0 0e 0 e 0c?
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C6 ,dC 7  a 0 0 0 b -1 0
d

0 a 0 0 b 0 -(dZ +e)

0 0 a 0 b i 0

o o 0 a b 0 (a,+ e)

b b b b c 0 0

0 (ý 0 0 0 (cý+ez)M
-M

1 0 -1 0 0 0dZ-eZ

C7 / (d2 + e2 ) a 0 0 0 b -1 0

0 a 0 0 b 0 -1

R6 /(d 2 + e2 ) 0 0 a 0 b i 0

0 0 0 a b 0 1

b b b b c 0 0

0 1-i 0 i 0 0 M/(d2+eZ)

i 0 .4 0 0 -M/(Cý+e) 0

For further simplification of notation, let us denote, in the rest of this

appendix, the following:
a a

M M (d + e

D - a 0 0 0 b

0 a 0 0 b

0 0 a 0 b

0 0 0 a b

b b b b c

Then, the determinant JAI is expanded into a sum of terms by means of

Laplace's expansion:

22 i



¶ab -4 0

ab 0 -i

ab t 0

b b 0

-i 0 1 0 - M 0

o -1 0 1 0 0 M

-1 0 0 0 a 0 b 4. 0 -i 0 a 0 0 b

0 -jo o 0 a b ji 0 0 0 a 0 .

b b b b c b b *b b

-i 0 1 0 0 -1 0 1 0 0

0 -t 0 t 0 -f 0 t .

-f. 0 0 a 0 0 b + 10 -i a 0 0 0 b

0OM 0 0 a 0 b t10 0 0 0 ab

0 0 0 a b b b b b c

b b b b c -i 0 1 0 0
-1 0 1 0 0 0 -1 0 1 0

10 4-! a 0 0 0 b 1 0 a 0 0 0 b

MO 0 0 0 a 0 b 01t 0 a 0 0 b

0 0 0 a b b L, b b c

b b b b c -t 0 1 0 0

0 -t 0 1 0 0 -j 0 1 0

1I01la 0 0 0 b - 0 a000 b +M D

0 M 0 0 0 b 0a00b

0 0 0 a b 0 0 a 0 b

b b b b c b b b b c

-1 0 1 0 0 0 -1 0 1 0
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I, aO0 b bc -a b b bb + bb'b 0Ob
0 a -1 00 0 b 1  00 - 0 1 a b

0 -A 0 0 -i 1 0 -i 0

=a?' (c) -ab (b+b) +(-ab) (b+b) = a2c*- 4ab2-

laf0 b bc -jabI b b b +10 b bb b

0 a -1 00 0 1 1i 0 a b~ -10 0

0 1 0 0 01 0 -il

-- a 2(-c) -ab (b b)-ab(b b) =a
2c-4ab2

13  Mla bl 0 0 a +M la 010 a b -MO0 bOO a

0 b b b b 0 a b b c a b b b b

-.1 0 0 -1 0 0 -i 0 0

~Mab (ab ab)+M aZ(-ac +b?)+Mab (ab) M(4 a2 b?..a 3 c)

1 4 a 01 b b e jla b ib b b + 0 bl b b b

G a 0 10 0 b 0 10 la bI -10 1

-1 00 -1 01 0 -1 0

-2 2=a (c) -ab b +b) -ab(b +b) =a' c- 4ab2

1 5 +M a 0 0 a b +M la bl 0 0 a +M 0 b1 0 0 a

10 a b bec 0 b b b b la bjb b b

-i 1 0 -i 0 1 0 4- 1

M 4(-ac b + b2)+-Maab)..ab) Ma ab) -.M (a c..-4a b2
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I6 al 0!ab c b I b b b + O0 b I b b b

0 a 1 00 0lob o 1 0 a b - 110

0 1 o -i 0 1 001

2 Z
a (c) -ab(b+b) -ab(b+b) c -4ab

-M a0 0 a b + M+a b 0(0 a -M 0 bO 0 0 a

0 a b b c lob b b b a bb b b

1 0 0 010 -1 1 0

-Ma2 (acb) + Mab (ab) +Mab (ab-ab) M (4abz -a3 c)

S a a 0 b Ma b 0 0 +Ma bIa 0 a 0

0 aJ0 a b 0 bj 00 a ab0 0
0 b b c b b b b b

M a (a- c)- ab 2 -b 2 ab) +Mab(a2b)(+M (-ab) (a 2 b)
22

M a (a 4 c -4a b2)

Collecting the results, we find,
9

detlAl = -Si 4 (a2c -4ab2) +4M(4a2b2 -ac) +

M2 (a c - 4a b2 )

= (Ma -2) 2 a (ac 4b2)

224
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Let us replace these symbols by those on the RUS of the identification
equations on page 220. Thus:

i•:..det JA 7 6[742 (a w,2 -p) -2 w?- (mr + @ 2"]Z (a wZ -p)

2 2[(aci2 -p)c -4b = 0

This is the characteristic or secular equation for in-plane normal
mode oscillations.
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Appendix E cos0i and sinti

2 (d'+ d 2)2 ,

~~O4 coswl os ti + sinwtie(+*3+

32
cos43=-cos~ot[ i 2

cos% = sin•ot[i (0 +4 '] +4sicoo[0 e+4 +"

4
cosi = (03 - )sinw•+t + 4 - •)cOSwot +

i--I

i 3 Oi + 206( 3 •41  cosot +

'042- 4 + '0'( 02 4 4 )] sin(

sinO= sinwot I 2 +...]+cos .ot( +'I..

2

(0 + Cos
sin' - sin t [ t - z " + ..si] -to, wt [ o + €1 .

3 0

sil (e C t 2 + in wt t1 4 +.

4
Ssin• 41 4i- 3 )Cos wot + 0 4 - 0)+iUo

2 [ 3 12 + 2 0 -143 -Isinot +

[#2.- ' 0z'( '4- ) cos"Ott+ o(0 3
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Appendix F To find the inverse matrix [B]r for inpiane
orthogonal transformation,

[[ 00 01 1 1 1 0 0 01 I1 1

00 0 t-1 1 +i C~~c 1  0 0 0 -A 1 -1 1C7 i

00 0 1-1 -11 c ý00 0 1-1-1 1

0 0 0 -1 11 i 1 0 0 0 4 - 1- 1

4b C +GC
1 0 0 0 0 0- 6 2 t 0 0 0 0 0 0

0 1 0 0 F -G 0 0 1 0 0 0 0 0
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Apuendix G Inverse of Orthogonal Matrix [ B I (Out-of-Plane Case)
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Appendix H Jnverse Orthonormal Matrix [B 1 for the, Case of
Unequal Length Boom Pairs with Translation
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